
InterBase 5

API Guide

100 Enterprise Way, Suite B2 Scotts Valley, CA 95066 http://www.interbase.com

InterBase®

S O F T W A R E C O R P O R A T I O N

InterBase Software Corp. and INPRISE Corporation may have patents and/or pending patent applications
covering subject matter in this document. The furnishing of this document does not convey any license to these
patents.

Copyright 1998 InterBase Software Corporation. All rights reserved. All InterBase products are trademarks or
registered trademarks of InterBase Software Corporation. All Borland products are trademarks or registered
trademarks of INPRISE Corporation, Borland and Visibroker Products. Other brand and product names are
trademarks or registered trademarks of their respective holders.

1INT0055WW21001 5E4R0898

9899000102-9 8 7 6 5 4 3 2 1

D4

API GUIDE iii

List of Tables ix

Chapter 1 Using the API Guide

Who should use this guide 13

Topics covered in this guide 14

Sample database and applications 15

Part I: API User s Guide

Chapter 2 Application Requirements

Requirements for all applications 19

Including ibase.h 20

Database requirements 20

Transaction requirements 21

Additional requirements 22

Microsoft Windows requirements 22

DSQL requirements 23

Blob requirements 23

Array requirements 24

Event requirements 25

Error-handling requirements 25

Compiling and linking 26

Chapter 3 Programming with
the InterBase API

Basic procedure for application
development 27

Supported development environments . . . 28

User name and password requirements . . 28

Specifying user name and password 29

Using environment variables 29

Setting a default database directory . . . 30

Setting a user name and password 30

Datatypes . 30

Calling conventions 31

Building applications 31

Compilers 31

Linking . 32

Include files 33

Using Microsoft C++ 33

Using Borland C/C++ 34

Setting up the Integrated Development
Environment (IDE) 35

The module definition file 36

Using dynamic link libraries (DLLs) . . . 36

Example programs 36

Chapter 4 Working with Databases

Connecting to databases 40

Creating database handles 40

Creating and populating a DPB 42

Adding parameters to a DPB 46

Attaching to a database 47

Requesting information about
an attachment 49

Requesting buffer items and result
buffer values 50

isc_database_info() call example 54

Disconnecting from databases 55

Deleting a database 56

Table of Contents

iv INTERBASE 5

Chapter 5 Working with Transactions

Starting transactions 58

Creating transaction handles 58

Creating a transaction parameter buffer 60

Calling isc_start_transaction() 67

Calling isc_start_multiple() 69

Ending transactions 71

Using isc_commit_transaction() 72

Using isc_prepare_transaction2() 74

Using isc_rollback_transaction() 75

Chapter 6 Working with Dynamic SQL

Overview of the DSQL programming
process . 77

DSQL API limitations 78

Accessing databases 78

Handling transactions 79

Creating a database 80

Processing Blob data 81

Processing array data 81

Writing an API application to process
SQL statements 81

Determining if API calls can process an
SQL statement 82

Representing an SQL statement as a
character string 82

Specifying parameters in SQL
statement strings 83

Understanding the XSQLDA 83

XSQLDA field descriptions 85

Input descriptors 87

Output descriptors 87

Using the XSQLDA_LENGTH macro . . . 88

SQL datatype macro constants 89

Handling varying string datatypes 91

Handling NUMERIC and DECIMAL
datatypes. 91

Coercing datatypes 92

Aligning numerical data 93

DSQL programming methods 94

Method 1: Non-query statements
without parameters 94

Method 2: Non-query statements
with parameters. 96

Method 3: Query statements
without parameters 99

Method 4: Query statements
with parameters. 104

Determining an unknown statement type
at runtime 111

Chapter 7 Working with Blob Data

What is a Blob? 114

How are Blob data stored? 115

Blob subtypes 115

Blob database storage 116

Blob data operations 116

Reading data from a Blob 117

Writing data to a Blob 122

Deleting a Blob 127

Requesting information about
an open Blob 127

Item-list buffer items and result
buffer values 128

isc_blob_info() call example 129

Blob descriptors 131

Populating a Blob descriptor 131

Filtering Blob data 132

Using your own filters 133

API GUIDE v

Declaring an external Blob filter to the database
133

Writing an external Blob filter 134

Writing an application that
requests filtering 139

Chapter 8 Working with Array Data

Introduction to arrays 146

Array database storage 147

Array descriptors 147

Populating an array descriptor 148

Accessing array data 149

Reading data from an array 149

Writing data to an array 155

Deleting an array. 161

Chapter 9 Working with Conversions

Converting dates from InterBase
to C format 164

Converting dates from C to
InterBase format 164

Reversing byte order of numbers with
isc_vax_integer() 165

Chapter 10 Handling Error Conditions

Setting up an error status vector 168

Using information in the status vector . . . 168

Checking the status vector for errors . 169

Displaying InterBase error messages . 169

Capturing InterBase error messages . . 170

Setting an SQLCODE value on error . . 172

Displaying SQL error messages. 172

Capturing SQL error messages 173

Parsing the status vector 174

Chapter 11 Working with Events

Understanding the event mechanism . . . 184

Event parameter buffers 184

Synchronous event notification 185

Asynchronous event notification 185

Transaction control of events 185

Creating EPBs with isc_event_block() . . 186

Waiting on events with
isc_wait_for_event() 187

Continuous processing with
isc_que_events() 188

Creating an AST 188

A complete isc_que_events() example . 189

Determining which events occurred with
isc_event_counts() 192

Canceling interest in asynchronous events
with isc_cancel_events() 193

Part II: API Reference Guide

Chapter 12 API Function Reference

Function categories 197

Array functions 198

Blob functions. 199

Database functions 200

Conversion functions 200

DSQL functions 201

Error-handling functions. 202

Event functions 202

Information functions 203

Security functions. 203

Transaction control functions 204

Using function definitions 205

isc_add_user() 206

vi INTERBASE 5

isc_array_get_slice() 209

isc_array_lookup_bounds() 214

isc_array_lookup_desc() 217

isc_array_put_slice(). 220

isc_array_set_desc() 227

isc_attach_database() 230

isc_blob_default_desc() 232

isc_blob_gen_bpb() 234

isc_blob_info() 235

isc_blob_lookup_desc() 237

isc_blob_set_desc() 239

isc_cancel_blob() 240

isc_cancel_events(). 242

isc_close_blob() 243

isc_commit_retaining() 244

isc_commit_transaction() 246

isc_create_blob2() 247

isc_database_info() 250

isc_decode_date() 252

isc_delete_user() 253

isc_detach_database() 256

isc_drop_database() 257

isc_dsql_allocate_statement(). 258

isc_dsql_alloc_statement2(). 260

isc_dsql_describe(). 262

isc_dsql_describe_bind() 264

isc_dsql_execute() 267

isc_dsql_execute2() 271

isc_dsql_execute_immediate() 275

isc_dsql_exec_immed2() 277

isc_dsql_fetch(). 280

isc_dsql_free_statement() 284

isc_dsql_prepare() 286

isc_dsql_set_cursor_name() 289

isc_dsql_sql_info() 292

isc_encode_date() 293

isc_event_block() 295

isc_event_counts() 296

isc_expand_dpb() 299

isc_get_segment(). 301

isc_interprete() 303

isc_modify_user() 305

isc_open_blob2() 308

isc_prepare_transaction() 310

isc_prepare_transaction2() 312

isc_print_sqlerror() 313

isc_print_status() 314

isc_put_segment() 315

isc_que_events() 317

isc_rollback_transaction() 321

isc_sqlcode(). 322

isc_sql_interprete() 323

isc_start_multiple() 324

isc_start_transaction() 327

isc_transaction_info() 330

isc_vax_integer() 332

isc_version() 334

isc_wait_for_event() 336

Appendix A InterBase Document
Conventions
The InterBase documentation set 340

Printing conventions 341

Syntax conventions 342

Appendix B Data Structures
Array descriptor 344

API GUIDE vii

Datatypes for array descriptors 345

Blob descriptor 345

Character sets 346

Blob information buffers 346

Blob buffer items. 348

Blob parameter buffer 348

Database information request buffer and result
buffer . 349

Request buffer 350

Result buffer 350

Request buffer items and result buffer values
351

SQL datatype macro constants 360

Status vector 362

Meaning of the first long in a cluster . . . 362

Transaction parameter buffer 364

XSQLDA and XSQLVAR 367

XSQLDA field descriptions 369

XSQLVAR field descriptions 370

API GUIDE ix

List of Tables

Table 1.1 API Guide chapters . 14

Table 3.1 Environment variables used by InterBase 29

Table 3.2 InterBase library file names . 32

Table 3.3 Microsoft C compiler options . 33

Table 3.4 Borland C compiler options . 34

Table 4.1 API database functions . 40

Table 4.2 DPB parameters . 43

Table 4.3 Alphabetical list of DPB parameters 44

Table 4.4 DPB parameters recognized by isc_expand_dpb() 46

Table 4.5 isc_expand_dbp() parameters . 46

Table 4.6 Database information items for database characteristics 50

Table 4.7 Database information items for environmental characteristics 52

Table 4.8 Database information items for performance statistics 53

Table 4.9 Database information items for operation counts 54

Table 5.1 API transaction functions . 57

Table 5.2 Additional API transaction functions 58

Table 5.3 TPB constants . 60

Table 5.4 Isolation level interaction with read and write operations. 64

Table 6.1 SQL statements that cannot be processed by the API 82

Table 6.2 XSQLDA field descriptions . 85

Table 6.3 XSQLVAR field descriptions . 86

Table 6.4 SQL datatypes, macro expressions, and C datatypes. 89

Table 6.5 SQL statement strings and recommended processing methods 94

Table 6.6 Statement types .112

Table 7.1 API Blob functions .114

Table 7.2 Blob request and return items .128

Table 7.3 Status message return items .129

Table 7.4 isc_blob_ctl structure field descriptions137

Table 7.5 Action constants .139

Table 7.6 Blob parameter buffer parameter types142

Table 8.1 API array access functions .146

Table 10.1 Error-handling functions .167

Table 10.2 Interpretation of status vector clusters175

x INTERBASE 5

Table 10.3 #defines for status vector numeric descriptors176

Table 11.1 API event functions .183

Table 12.1 Array functions .198

Table 12.2 Blob functions .199

Table 12.3 Database functions .200

Table 12.4 Date and conversion functions .200

Table 12.5 DSQL functions .201

Table 12.6 Error-handling functions .202

Table 12.7 Event functions .202

Table 12.8 Information functions .203

Table 12.9 Security functions .203

Table 12.10 Transaction control functions .204

Table 12.11 Function description format .205

Table 12.12 Error messages for user security functions207

Table 12.13 Datatypes for array descriptor fields215

Table 12.14 Datatypes for array descriptor fields218

Table 12.15 Datatypes for array descriptor fields228

Table 12.16 Blob descriptor fields .233

Table 12.17 Blob descriptor fields .238

Table 12.18 Error messages for user security functions254

Table 12.19 Error messages for user security functions306

Table 12.20 Transaction information request item330

Table 12.21 Status message return items .331

Table A.1 Books in the InterBase 5 documentation set340

Table A.2 Text conventions .341

Table A.3 Syntax conventions .342

Table B.1 Array descriptor fields .344

Table B.2 Datatypes for array descriptors .345

Table B.3 Blob descriptor fields .346

Table B.4 Blob information items and return values348

Table B.5 Status message return items .348

Table B.6 Blob parameter buffer parameter types349

Table B.7 Status message return items .351

Table B.8 Database information items for database characteristics352

Table B.9 Database information items for environmental characteristics354

Table B.10 Database information items for performance statistics355

API GUIDE xi

Table B.11 Database information items for operation counts356

Table B.12 DPB parameters .357

Table B.13 Alphabetical list of DPB parameters358

Table B.14 SQL datatypes, macro expressions, and C datatypes360

Table B.15 Interpretation of status vector clusters363

Table B.16 #defines for status vector numeric descriptors364

Table B.17 TPB constants .365

Table B.18 XSQLDA field descriptions .369

Table B.19 XSQLVAR field descriptions .370

13

CHAPTER

1
Chapter 1Using the API Guide

The InterBase API Guide is a task-oriented explanation of how to write, preprocess,
compile, and link database applications using the InterBase Applications Programming
Interface (API), and a host programming language, either C or C++.

This chapter describes the focus of this book, and provides a brief overview of its
chapters.

Who should use this guide
The InterBase API Guide is intended for knowledgeable database applications
programmers. It assumes full knowledge of:

g SQL and dynamic SQL (DSQL).

g Relational database programming.

g C programming.

CHAPTER 1 USING THE API GUIDE

14 INTERBASE 5

Topics covered in this guide
The API Guide is divided into two parts:

g A task-oriented user’s guide that explains how to use API function calls to perform related
database tasks, such as attaching to and detaching from a database.

g An API function call reference that describes the purpose of each function, its syntax, its
parameters, requirements, restrictions, and return values, as well as examples of use and
cross-references to related functions.

The following table provides a brief description of each chapter in the API Guide:

Chapter Description

Chapter 2, “Application Requirements” Describes support structures and elements common to
programming with API calls

Chapter 3, “Programming with the InterBase API” Describes special requirements for programming InterBase
applications with the InterBase API

Chapter 4, “Working with Databases” Describes how to attach to and detach from databases, and how to
request information about attachments

Chapter 5, “Working with Transactions” Explains how to start transactions in different modes, and how to
commit them or roll them back

Chapter 6, “Working with Dynamic SQL” Describes how to process DSQL data definition and data
manipulation statements using API calls

Chapter 7, “Working with Blob Data” Describes how to select, insert, update, and delete Blob data in
applications

Chapter 8, “Working with Array Data” Describes how to select, insert, update, and delete array data in
applications

Chapter 9, “Working with Conversions” Describes how to select, insert, update, and delete DATE data in
applications, and how to reverse the byte order of numbers with
isc_vax_integer()

Chapter 10, “Handling Error Conditions” Describes how to trap and handle database errors in applications

Chapter 11, “Working with Events” Explains how triggers interact with applications and describes how to
register interest in events, wait on them, and respond to them in
applications

TABLE 1.1 API Guide chapters

SAMPLE DATABASE AND APPLICATIONS

API GUIDE 15

Sample database and applications
The InterBase Examples subdirectory contains a sample database and sample application
source code. The examples in this API Guide make use of this sample database and
source code wherever possible.

Chapter 12, “API Function Reference” Describes the syntax of each function call in detail.

Appendix A, “InterBase Document Conventions” Lists typefaces and special characters used in this book to describe
syntax and identify object types.

Appendix B, “Data Structures” Lists and describes the data structures, constants, and buffers that are
defined in ibase.h.

Chapter Description

TABLE 1.1 API Guide chapters (continued)

16 INTERBASE 5

API GUIDE 17

PART I

Part IAPI
User’s
Guide

Part I: API User’s Guide

18 INTERBASE 5

API GUIDE 19

CHAPTER

2
Chapter 2Application Requirements

This chapter summarizes programming requirements for using categories of API
functions in database applications, and provides cross-references to more detailed
information in later chapters.

All API applications must use certain API functions and support structures. For example,
all applications connect to at least one database, and run at least one transaction. All
applications, therefore, must declare and initialize database handles and transaction
handles. They may also need to declare and populate database parameter buffers (DPBs)
and transaction parameter buffers (TPBs). This chapter outlines those requirements, and
points you to more detailed information later in this book.

Some API applications may use specific API functions, such as the functions that permit
an application to process dynamic SQL (DSQL) statements. These applications have
additional requirements that are also outlined in this chapter along with pointers to more
detailed information elsewhere in this book.

Requirements for all applications
The following sections outline these requirements for all API applications:

g Including ibase.h

g Database requirements

CHAPTER 2 APPLICATION REQUIREMENTS

20 INTERBASE 5

g Transaction requirements

Including ibase.h
The InterBase subdirectory, include, contains the ibase.h header file, which should be
included in all source code modules for API applications. ibase.h contains API function
prototypes. It also contains structure typedefs, parameter definitions, and macros
required by various API functions.

To include ibase.h in a source code module, insert the following #include near the start
of the source code:

#include <ibase.h>

If ibase.h is not on your compiler’s search path, you may need to provide a full path
specification and enclose the file name in quotation marks.

Failure to include ibase.h can prevent the successful compilation and linking of an
application.

Database requirements
All applications that work with databases must provide one database handle for each
database to be accessed. A database handle is a long pointer that is used in API functions
to attach to a database and to reference it in subsequent API calls. The InterBase header
file, ibase.h, contains a #define useful for declaring database handles.

When establishing a connection to a database, optional database attachment
characteristics, such as a user name and password combination, can be passed to the
attachment through a database parameter buffer (DPB). Usually, one DPB is set up for
each database attachment, although database attachments can also share a DPB.

4 Declaring database handles
A database handle must be declared and initialized to zero before use. The following code
illustrates how to declare and initialize a database handle:

#include <ibase.h>

. . .

/* Declare a database handle. */

isc_db_handle db1;

. . .

/* Initialize the handle. */

REQUIREMENTS FOR ALL APPLICATIONS

API GUIDE 21

db1 = 0L;

For more information about declaring, initializing, and using database handles, see
Chapter 4, “Working with Databases.”

4 Setting up a DPB
A DPB is a byte array describing optional database attachment characteristics. A DPB
must be set up and populated before attaching to a database. Parameters that can be
passed to the DPB are defined in ibase.h.

For more information about setting up, populating, and using a DPB, see Chapter 4,
“Working with Databases.”

Transaction requirements
All applications must provide one transaction handle for each transaction to be accessed.
A transaction handle is a long pointer that is used in API functions to start a transaction
and to reference it in subsequent API calls. The InterBase header file, ibase.h, contains a
#define useful for declaring transaction handles.

When starting a transaction, optional transaction characteristics, such as access method
and isolation level, can be passed to the start-up call through a transaction parameter
buffer (TPB). Usually, one TPB is set up for each transaction, although transactions with
the same operating characteristics can also share a TPB.

4 Declaring transaction handles
A transaction handle must be declared and initialized to zero before use. The following
code illustrates how to declare and initialize a transaction handle:

#include "ibase.h"

. . .

/* Declare a transaction handle. */

isc_tr_handle tr1;

. . .

/* Initialize the handle. */

tr1 = 0L;

For more information about declaring, initializing, and using transaction handles, see
Chapter 5, “Working with Transactions.”

CHAPTER 2 APPLICATION REQUIREMENTS

22 INTERBASE 5

4 Setting up a TPB
A TPB is a byte array containing parameters that describe optional transaction
characteristics. In these cases, the TPB must be set up and populated before starting a
transaction. Parameters that can be passed to the TPB are defined in ibase.h.

For more information about setting up, populating, and using a TPB, see Chapter 5,
“Working with Transactions.”

Additional requirements
The following sections outline possible additional requirements for API applications
developed on certain system platforms, such as Microsoft Windows, and for general
classes of API functions, such as those that process DSQL statements.

Microsoft Windows requirements
InterBase client applications for Microsoft Windows have programming requirements
specific to that environment and the C/C++ compilers available there.

The InterBase header file, ibase.h, provides prototypes of all API functions. For Windows
applications, these prototypes make use of the following declarations:

#define ISC_FAR __far

#define ISC_EXPORT ISC_FAR __cdecl __loadds __export

For example, the isc_attach_database() prototype in ibase.h is:

ISC_STATUS ISC_EXPORT isc_attach_database(

ISC_STATvUS ISC_FAR *,

short,

char ISC_FAR,

isc_db_handle ISC FAR *,

short,

char ISC_FAR *);

When Windows client applications make calls and cast C datatypes, they should make
explicit use of the ISC_FAR declaration.

Note The ISC_EXPORT keyword is omitted from the API function reference because on all
non-Windows platforms it is undefined.

For more information about Windows requirements, see Chapter 3, “Programming
with the InterBase API.”

ADDITIONAL REQUIREMENTS

API GUIDE 23

DSQL requirements
API applications that build or prompt for DSQL queries at run time require careful
declaration, initialization, and population of extended SQL descriptor area (XSQLDA)
structures for data transfer to and from the database. In addition, many API functions,
such as isc_dsql_allocate_statement() and isc_dsql_describe(), also make use of statement
handles for DSQL processing.

ibase.h provides typedefs for the XSQLDA structure, and its underlying structure, the
XSQLVAR. It also provides a #define for the statement handle, a macro for allocating the
appropriate amount of space for an instance of an XSQLDA in an application, and
#defines for DSQL information parameters passed to isc_dsql_sql_info().

The following code illustrates how to declare an XSQLDA structure for use in an
application, and how to declare a statement handle:

#include <ibase.h>

. . .

XSQLDA *insqlda;

isc_stmt_handle sql_stmt;

. . .

For more information about DSQL programming with the API, see Chapter 6, “Working
with Dynamic SQL.”

Blob requirements
To work with Blob data that must be filtered, an API application must set up a Blob
parameter buffer (BPB) for each Blob. A BPB is a variable-length byte vector declared in
an application to store control information that dictates Blob access. The BPB can contain
a number of constants, defined in ibase.h, that describe the Blob and the Blob subtypes
that specify Blob filtering.

IMPORTANT Blob filtering is not available on NetWare servers.

Applications that work with Blob data in an international environment must also declare
and populate a Blob descriptor that contains character set information for the Blob. The
Blob descriptor structure is defined in ibase.h. To declare a Blob descriptor, an
application must provide code like this:

#include <ibase.h>

. . .

ISC_BLOB_DESC to_desc;

CHAPTER 2 APPLICATION REQUIREMENTS

24 INTERBASE 5

Except on NetWare servers, where they are not supported, Blob filters enable a Blob to
be translated from one format to another, such as from a compressed state to an
decompressed state or vice versa. If Blob filters are desired, separate filter functions must
be created and defined to the database to ensure their use when Blob data is accessed.

Finally, to access Blob data, applications must make extensive use of API DSQL functions.

For more information about working with Blob data and Blob filters, see
Chapter 7, “Working with Blob Data.”For more information about DSQL, see Chapter
6, “Working with Dynamic SQL.”

Array requirements
API functions that handle array processing require the use of an array descriptor structure
and array IDs, defined in ibase.h. In addition, applications accessing arrays must make
extensive use of API DSQL functions.

The following code illustrates how to declare an array descriptor and array ID variable,
and how to initialize an array ID to zero before use:

#include <ibase.h>

. . .

ISC_ARRAY_DESC desc;

ISC_QUAD array_id;

. . .

array_id = 0L;

. . .

For more information about working with arrays, see Chapter 8, “Working with Array
Data.”For more information about DSQL, see Chapter 6, “Working with Dynamic
SQL.”

ADDITIONAL REQUIREMENTS

API GUIDE 25

Event requirements
InterBase events are messages passed from a trigger or stored procedure to an application
to announce the occurrence of specified conditions or actions, usually database changes
such as insertions, modifications, or deletions of records.

Before an application can respond to an event, it must register interest in an event. To
register interest in an event, the application must establish and populate two event
parameter buffers (EPBs), one for holding the initial occurrence count values for each
event of interest, and another for holding the changed occurrence count values. These
buffers are passed as parameters to several API event functions, and are used to
determine which events have occurred.

In C, each EPB is declared as a char pointer, as follows:

char *event_buffer, *result_buffer;

Once the buffers are declared, isc_event_block() is called to allocate space for them, and to
populate them with starting values.

For more information about events, see Chapter 11, “Working with Events.”

Error-handling requirements
Most API functions return status information in an error status vector, an array of 20
longs. To handle InterBase error conditions, should they arise, applications should
declare a status vector as follows:

#include <ibase.h>

. . .

ISC_STATUS status_vector[20];

ISC_STATUS is a #define in ibase.h provided for programming convenience and platform
independence.

ibase.h also contains #defines for all InterBase error conditions. Applications can use API
error-handling functions to construct error messages from the status vector that are based
on these error conditions, or can examine the status vector directly for particular error
conditions using the #defines in place of error numbers. Using #defines in this manner
makes source code easier to understand and maintain.

For more information about error handling, see Chapter 11, “Working with Events.”

CHAPTER 2 APPLICATION REQUIREMENTS

26 INTERBASE 5

Compiling and linking
On most development platforms, an API application is compiled like any standard C or
C++ application. For more information about a particular compiler, consult the
compiler’s documentation.

On most platforms, InterBase supports dynamic linking of its library at run time.
One exception to this scenario is on Microsoft Windows, where an application must
explicitly link to the InterBase library (gds32.lib or gds32_ms.lib).

On Microsoft Windows, there are particular compiling options to be aware of.For more
information about linking under Windows, see Chapter 3, “Programming with
the InterBase API.”

For all other platforms, see the InterBase Programmer’s Guide for specific compiling and
linking guidelines.

API GUIDE 27

CHAPTER

3
Chapter 3Programming with

the InterBase API

This chapter provides information specific to programming InterBase applications on a
client with C/C++. It assumes familiarity with Borland C/C++ or Microsoft C/C++,
InterBase, and the InterBase documentation set, particularly the Language Reference.

Basic procedure for application development
The basic steps in application development on the InterBase Windows Client are:

g Determine which client and server platforms the application will run on. InterBase clients
and servers include Microsoft Windows 95, Windows NT, and Unix. An older version of
the InterBase server is available for Novell NetWare 4.

g Code the application in C or C++. On UNIX, InterBase also supports compilers for COBOL,
ADA, and FORTRAN.

g Compile and link the application.

g Test and debug the application.

g Deploy the application on the production client platform.

CHAPTER 3 PROGRAMMING WITH THE INTERBASE API

28 INTERBASE 5

Supported development environments
The InterBase client library enables developers to design InterBase SQL client
applications that connect to remote InterBase servers on Windows 95, Windows NT, Unix,
or NetWare.

See the Operations Guide for more specific information about this topic.

User name and password requirements
When an InterBase client application is compiled, linked, and run, the client must always
send a valid user name and password combination to the InterBase server. The server
checks the user name and password against the user name and password combinations
stored in its security database. If a match is found, the client can attach to InterBase
databases on the server. If a match is not found, attachment is denied.

For a successful attachment to occur, the following steps must be taken:

1. A user with SYSDBA privileges must add a client’s user name and password to
the server’s security database (isc4.gdb). Use the Server Manager to do this
on Windows platforms. On UNIX, use the gsec utility.

2. The client must send a valid user name and password combination to the
server. Password is case-sensitive.

Note Under some circumstances, you can connect to a database even if you don’t have
a user name in the InterBase security database. In order for this to happen, the following
things must be true:

· Both the client and server are running under UNIX

· Your current login exists on the server host

· You are logging in from a trusted client; a trusted client is one that is listed in the
/etc/hosts.equiv or /etc/gds_hosts.equiv file on the server or in the .rhosts file in your
home directory on the server

· You have not specified a user name and password in the connect string

SPECIFYING USER NAME AND PASSWORD

API GUIDE 29

Specifying user name and password
A client application must specify a user name and password when it attaches to a
database. Failure to provide a valid user name and password combination results in an
error. Use the following methods to provide user names and passwords:

g Create a database parameter block (DPB) with isc_dpb_user_name and
isc_dpb_password, and pass the parameter block using isc_attach_database().

g Add isc_dpb_user_name and isc_dpb_password parameters to an existing DPB with
isc_expand_dpb().

For more information about the DPB, isc_attach_database(), and isc_expand_dpb(), see
Chapter 4, “Working with Databases.”

Using environment variables
InterBase client applications can use three environment variables to establish program
parameters. These variables must be set so that they are available to the application when
it is running. For example, setting these variables within a DOS window after Windows
has been started does not affect any Windows programs, but affects DOS applications in
that window.

The following table summarizes these variables and their uses:

The ISC_USER and ISC_PASSWORD environment variables are used together to establish a
valid user name and password combination to pass to the remote InterBase database
server.

Variable Purpose Example

ISC_DATABASE Specifies a default server and
database directory to use on the
remote server

SET ISC_DATABASE =
ingold:/usr/interbase/examples

ISC_USER Specifies a user name for the PC client
application

SET ISC_USER = HERMES

ISC_PASSWORD Specifies a case-sensitive password for
the PC client application

SET_PASSWORD = Ichneumon

TABLE 3.1 Environment variables used by InterBase

CHAPTER 3 PROGRAMMING WITH THE INTERBASE API

30 INTERBASE 5

IMPORTANT Do not use the ISC_PASSWORD environment variable when security is a concern. Anyone
with access to a client where an ISC_PASSWORD environment variable is defined in a file
such as autoexec.bat can easily view the password.

Setting a default database directory
To connect automatically to a default database directory on a remote server, create the
ISC_DATABASE environment variable and set it to the full path specification for the desired
database directory, including host and path names.

Note Host name specification is specific to the server’s operating system and network
protocol. The host syntax in the previous example is for a generic Unix server. For other
servers and operating systems, see that system’s reference manuals.

Setting a user name and password
To set up a default user name and password for use on a PC client, create two
environment variables, ISC_USER, and ISC_PASSWORD.

Even if ISC_USER and ISC_PASSWORD are set, a different user name and password may be
specified in a DPB used as an argument to isc_attach_database(). A user name or password
specified in a database parameter block overrides the OS environment variables.

Note Using environment variables in this manner is not secure, and therefore not
recommended.

Datatypes
InterBase supports a wide variety of datatypes for application development. These
datatypes are defined in a typedef to be platform-independent. The InterBase client
libraries are also compiled with packed data structures to be compatible with a variety of
platforms.

For more information about InterBase datatypes, see the Language Reference.

CALLING CONVENTIONS

API GUIDE 31

Calling conventions
Conventions for calling functions vary from platform to platform. Specifically:

g On UNIX platforms, use the C calling conventions (cdecl) in all cases.

g On Windows 95 and Windows NT, use the standard calling conventions (_stdcall) for all
functions that have a fixed number of arguments. There are only three functions that have
a variable number of arguments. For these three—isc_start_transaction(), isc_expand_dpb(),
and isc_event_block()—use the cdecl conventions.

Building applications
This section discusses compilers and libraries that are needed to build InterBase
applications.

HELP WITH LINKING AND COMPILING On each platform, there is a makefile in the
examples directory that contains detailed platform-specific information about linking and
compiling. Open the makefile in a text editor to access the information.

Compilers
The import libraries included with InterBase have been tested with the following
compilers:

Windows platforms

g Borland C++ 5.0

g Microsoft Visual C++ 2.0

g Microsoft Visual C++ 4.0

Solaris

g C SPARCWorks SC4.2 C compiler

g C++ SPARCWorks SC3.0.1 C++ compiler

g COBOL MicroFocus Cobol 4.0

g ADA SPARCWorks SC4.0 Ada compiler

g FORTRAN SPARCWorks SC4.0 Fortran compiler

CHAPTER 3 PROGRAMMING WITH THE INTERBASE API

32 INTERBASE 5

HP-UX

g C HP C/HP-UX Version A.10.32

g C++ HP C++/HP-UX Version A.10.22

g COBOL MicroFocus Cobol 4.0

g ADA Alsys Ada - AdaWorld V5.5.4

g FORTRAN HP Fortran/9000 10.20 Release

Linking
The InterBase library files reside in the lib subdirectory of the installation directory.
Applications must link with the InterBase client library. This library name varies
depending on the platform and the compiler.

Borland compilers earlier than 5.0 do not work with gds32.lib.

Platform/compiler InterBase library file

Windows/Borland C++ gds32.lib

Windows/Microsoft Visual C++ 2.0 and 4.0 gds32_ms.lib

Solaris/all gdsmt

HPUX/all gds

TABLE 3.2 InterBase library file names

BUILDING APPLICATIONS

API GUIDE 33

Include files
Applications must include the ibase.h header file to pick up the InterBase type definitions
and function prototypes. This file is in the include subdirectory of the InterBase install
directory.

On UNIX platforms, the gds.h file is available in the installation directory for backward
compatibility.

Using Microsoft C++
Use the following options when compiling applications with Microsoft C++:

For example, these commands use the Microsoft compiler to build a DLL that uses
InterBase:

cl -c -Zi -DWIN32 -D_MT -LD udf.c

lib -out:udf.lib -def:funclib.def -machine:i586 -subsystem:console

link -DLL -out:funclib.dll -DEBUG:full,mapped -DEBUGTYPE:CV

-machine:i586 -entry:_DllMainCRTStartup@12 -subsystem:console

-verbose udf.obj udf.exp gds32.lib ib_util_ms.lib crtdll.lib

This command builds an InterBase executable using the Microsoft compiler:

cl -Zi -DWIN32 -D_MT -MD udftest.c udf.lib gds32.lib

ib_util_ms.lib crtdll.lib

Note See “Creating user-defined functions” on page 188 of the Data Definition
Guide, Chapter 5, “User-Defined Functions” of the Language Reference, and Chapter
10, “Working with User-Defined Functions” in the Programmer’s Guide for more
about compiling and linking user-defined libraries.

Option Action

c Compile without linking (DLLs only)

Zi Generate complete debugging information

DWIN32 Defines “WIN32” to be the null string

D_MT Use a multi-thread, statically-linked library

TABLE 3.3 Microsoft C compiler options

CHAPTER 3 PROGRAMMING WITH THE INTERBASE API

34 INTERBASE 5

Using the Dynamic Runtime Library If you are

· using a Microsoft Visual C++ 2.0 or Microsoft Visual C++ 4.0

· compiling and linking separately, and

· using the Dynamic Runtime Library (msvcrt20.dll or msvcrt40.dll)

you need to use the /MD compiler flag to compile with the run time library (RTL), as well
as linking with the correct import library.

Using Borland C/C++
Use the following options when compiling applications with Borland C++:

The following command creates a DLL named funclib.dll from a source file named udf.c:

implib mygds32.lib \interbas\bin\gds32.dll

bcc32 -v -a4 -DWIN32 -tWM -tWCD -efunclib.dll udf.c mygds32.lib

The following commands create an InterBase executable named udftest.exe (which calls
into funclib.dll) from a source file named udftest.e containing embedded SQL
commands.

implib udf.lib funclib.dll

gpre -e udftest.e

bcc32 -v -a4 -DWIN32 -tWM -tWC udftest.c udf.lib mygds32.lib

Option Action

v Turns on source debugging

a4 Structure padding/byte alignment

DWIN32 Defines the string “WIN32”; with no argument, it defines it to the null string

tWM Makes the target multi-threaded

tWC: Makes the target a console .EXE with all functions exportable; cannot be used
with the -tWCD option

tWCD Makes the target a console .DLL with all functions exportable; cannot be used
with the -tWC option

TABLE 3.4 Borland C compiler options

BUILDING APPLICATIONS

API GUIDE 35

When linking applications with Borland C command line linker, use the /c option (case
sensitive link).

Note There are equivalent general linker options within the Borland Integrated
Development Environment (IDE). The default in the IDE is case-sensitive link (/c option)
alone, which causes unresolved linker errors for all of the InterBase entry points.

Setting up the Integrated Development Environment (IDE)
The Borland Integrated Development Environment (IDE) offers options that are
equivalent to the command line options.

4 IDE default
The case-sensitive link (/c option) is the default in the IDE.

4 IDE Project Options dialog box
Choose the following options from the IDE Project Options dialog box. The
corresponding command-line option is also listed.

DIRECTORIES

Include directory: c:\Program Files\InterBase Corp\InterBase\include

Library directory: c:\Program Files\InterBase Corp\InterBase\lib

Note This path specification assumes that InterBase was installed in the
c:\Program Files\InterBase Corp\InterBase directory.

COMPILER

Source language compliance: Borland extensions

32-bit Compiler

Data alignment: Byte (-a4 option for 4 byte alignment)

LINKER

Choose Case-sensitive link ON (/c option).

CHAPTER 3 PROGRAMMING WITH THE INTERBASE API

36 INTERBASE 5

The module definition file
Creating a module definition file can solve certain issues that arise during linking and
compiling with the Borland C++ Builder:

g Set the STACKSIZE parameter to at least 10 kilobytes (10,240 bytes); 16 kilobytes (16,384
bytes) is recommended. A sample .def file is included in the examples subdirectory of the
InterBase installation directory.

g Because the Borland C++Builder prepends an underscore to some API functions that
gds32.dll exports without the underscore, you may need to add aliases for these functions
to your module definition file, as in the following example:

IMPORTS

_isc_start_transaction = GDS32.isc_start_transaction

Using dynamic link libraries (DLLs)
InterBase applications use the gds32.dll dynamic link library, which in turn loads the
appropriate network DLLs. These DLLs unload automatically when the last calling
application terminates. If the calling application exits abnormally (for example, from a
protection fault), it is possible that DLLs will not be unloaded from memory. If this occurs,
exit and restart Windows to free the resources.

Example programs
Example programs demonstrating how to use the InterBase API are included in the
examples subdirectory of the InterBase installation directory. There is also a sample .def
file.

On NT, there are two make files, makefile.bc for the Borland compiler and linker, and
makefile.msc for the Microsoft compiler and linker. In both files, you must modify the
IBASE environment variable to point to an absolute path.

In the .bc make file, modify the BCDIR variable to point to the absolute path to the
Borland compiler and linker.

In the .msc make file, modify the MSCDIR variable to point to the absolute path to the
Microsoft compiler and linker.

BUILDING APPLICATIONS

API GUIDE 37

To build the example applications on NT using Borland C++, use the following
command:

make -B -f makefile.bc all

To build the example applications using Microsoft C++, use this command:

nmake -B -f makefile.msc all

On UNIX systems, the command to build the example applications is as follows:

make all

38 INTERBASE 5

API GUIDE 39

CHAPTER

4
Chapter 4Working with Databases

This chapter describes how to set up a database parameter buffer (DPB) that specifies
database attachment parameters, how to set up and initialize database handles, and how
to use the five API functions that control database access. It also explains how to set up
item request and return buffers prior to retrieving information about an attached
database.

CHAPTER 4 WORKING WITH DATABASES

40 INTERBASE 5

The following table lists the API functions for working with databases. The functions are
listed in the order that they typically appear in an application.

Connecting to databases
Connecting to one or more databases is a four-step process:

1. Creating and initializing a database handle for each database to be attached.

2. Creating and populating a DPB for each database to be attached.

3. Optionally calling isc_expand_dpb() prior to actual attachment to add more
database parameters to a previously created and populated DPB.

4. Calling isc_attach_database() for each database to which to connect.

These steps are described in the following sections of this chapter.

Creating database handles
Every database that is accessed in an application must be associated with its own
database handle, a pointer to a FILE structure that is used by all API database functions.
The ibase.h header file contains the following C typedef declaration for database handles:

typedef void ISC_FAR *isc_db_handle;

Call Purpose

isc_expand_dpb() Specifies additional parameters for database access, such as user names
and passwords elicited from a user at run time; uses a previously declared
and populated DPB

isc_attach_database() Connects to a database and establishes initial parameters for database
access, such as number of cache buffers to use; uses a previously declared
and populated DPB

isc_database_info() Retrieves requested information about an attached database, such as the
version of the on-disk structure (ODS) that it uses

isc_detach_database() Disconnects from an attached database and frees system resources
allocated to that attachment

isc_drop_database() Deletes a database and any support files, such as shadow files

TABLE 4.1 API database functions

CONNECTING TO DATABASES

API GUIDE 41

To use this typedef for declaring database handles in an application, include ibase.h in
each source file module:

#include <ibase.h>

4 Declaring database handles
To establish database handles for use, declare a variable of type isc_db_handle for each
database that will be accessed at the same time. The following code declares two handles:

#include <ibase.h>

. . .

isc_db_handle db1;

iac_db_handle db2;

Once a database is no longer attached, its handle can be assigned to a different database
in a subsequent attachment. If an application accesses several databases, but only
accesses a subset of databases at the same time, it is only necessary to declare as many
handles as there will be simultaneous database accesses. For example, if an application
accesses a total of three databases, but only attaches to two of them at a time, only two
database handles need be declared.

4 Initializing database handles
Before a database handle can be used to attach to a database, it must be set to zero. The
following code illustrates how two database handles are set to zero:

#include <ibase.h>

. . .

isc_db_handle db1;

isc_db_handle db2;

. . .

/* Set database handles to zero before attaching to a database. */

db1 = 0L;

db2 = 0L;

Once a database handle is initialized to zero, it can be used in a call to isc_attach_database()
to establish a database connection. If a nonzero database handle is passed to
isc_attach_database(), the connection fails and an error code is returned. For more
information about establishing a database connection with isc_attach_database(), see
“Attaching to a database” on page 47.

CHAPTER 4 WORKING WITH DATABASES

42 INTERBASE 5

Creating and populating a DPB
Database attachments can optionally be tailored in many ways by creating a database
parameter buffer (DPB), populating it with desired database characteristics, and passing
the address of the DPB to isc_attach_database().

For example, the DPB can contain a user name and password for attaching to a database
on a remote server, and it might also contain a parameter that activates a database
shadow file. For a list of all possible DPB parameters, see Table 4.2, “DPB parameters,”
on page 43.

Usually a separate DPB is created for each database attachment, but if different
attachments use the same set of parameters, they can share a DPB. If a DPB is not created
or is not passed to isc_attach_database(), the database attachment uses a default set of
parameters.

TIP Some of the DPB parameters correspond directly to gfix options. In fact, that’s how gfix
is implemented: it sets certain DPB parameters and attaches to a database, where it
performs the requested operation (sweep, set async writes, shutdown, or whatever).

A DPB is a char array variable, specifically declared in an application, that consists of the
following parts:

1. A byte specifying the version of the parameter buffer, always the
compile-time constant, isc_dpb_version1.

2. A contiguous series of one or more clusters of bytes, each describing a single
parameter.

Each cluster consists of the following parts:

1. A one-byte parameter type. There are compile-time constants defined for all
the parameter types (for example, isc_dpb_num_buffers).

2. A one-byte number specifying the number of bytes that follow in the
remainder of the cluster.

3. A variable number of bytes, whose interpretation (for example, as a number
or as a string of characters) depends on the parameter type.

For example, the following code creates a DPB with a single parameter that sets the
number of cache buffers to use when connecting to a database:

char dpb_buffer[256], *dpb, *p;

short dpb_length;

/* Construct the database parameter buffer. */

dpb = dpb_buffer;

*dpb++ = isc_dpb_version1;

CONNECTING TO DATABASES

API GUIDE 43

*dpb++ = isc_num_buffers;

*dpb++ = 1;

*dpb++ = 90;

dpb_length = dpb - dpb_buffer;

IMPORTANT All numbers in the database parameter buffer must be represented in a generic format,
with the least significant byte first, and the most significant byte last. Signed numbers
should have the sign in the last byte. The API function isc_vax_integer() can be used to
reverse the byte order of a number. For more information, see “isc_vax_integer()” on
page 332.

The following table lists DPB items by purpose:

User validation

User name isc_dpb_user_name

Password isc_dpb_password

Encrypted password isc_dpb_password_enc

Role name isc_dpb_sql_role_name

System database administrator’s user name isc_dpb_sys_user_name

Authorization key for a software license isc_dpb_license

Database encryption key isc_dpb_encrypt_key

Environmental control

Number of cache buffers isc_dpb_num_buffers

dbkey context scope isc_dpb_dbkey_scope

System management

Force writes to the database to be done asynchronously or synchronously isc_dpb_force_write

Specify whether or not to reserve a small amount of space on each database
page for holding backup versions of records when modifications are made

isc_dpb_no_reserve

System management

Specify whether or not the database should be marked as damaged isc_dpb_damaged

Perform consistency checking of internal structures isc_dpb_verify

TABLE 4.2 DPB parameters

CHAPTER 4 WORKING WITH DATABASES

44 INTERBASE 5

The following table lists DPB parameters in alphabetical order. For each parameter, it lists
its purpose, the length, in bytes, of any values passed with the parameter, and the value
to pass.

Shadow control

Activate the database shadow, an optional, duplicate, in-sync copy of the
database

isc_dpb_activate_shadow

Delete the database shadow isc_dpb_delete_shadow

Replay logging system control

Activate a replay logging system to keep track of all database calls isc_dpb_begin_log

Deactivate the replay logging system isc_dpb_quit_log

Character set and message file specification

Language-specific message file isc_dpb_lc_messages

Character set to be utilized isc_dpb_lc_ctype

Parameter Purpose Length Value

isc_dpb_activate_shadow Directive to activate the database shadow, which
is an optional, duplicate, in-sync copy of the
database

1 (Ignored) 0 (Ignored)

isc_dpb_damaged Number signifying whether or not the database
should be marked as damaged

1 = mark as damaged

0 = do not mark as damaged

1 0 or 1

isc_dpb_dbkey_scope Scope of dbkey context. 0 limits scope to the
current transaction, 1 extends scope to the
database session

1 0 or 1

isc_dpb_delete_shadow Directive to delete a database shadow that is no
longer needed

1(Ignored) 0 (Ignored)

isc_dpb_encrypt_key String encryption key, up to 255 characters Number of bytes
in string

String containing key

TABLE 4.3 Alphabetical list of DPB parameters

TABLE 4.2 DPB parameters (continued)

CONNECTING TO DATABASES

API GUIDE 45

isc_dpb_force_write Specifies whether database writes
are synchronous or asynchronous.

0 = asynchronous; 1 = synchronous

1 0 or 1

isc_dpb_lc_ctype String specifying the character set to be utilized Number of bytes
in string

String containing
character set name

isc_dpb_lc_messages String specifying a language-specific message file Number of bytes
in string

String containing
message file name

isc_dpb_license String authorization key for a software license Number of bytes
in string

String containing key

isc_dpb_no_reserve Specifies whether or not a small amount of space
on each database page is reserved for holding
backup versions of records when modifications are
made; keep backup versions on the same page as
the primary record to optimize update activity

0 (default) = reserve space

1= do not reserve space

1 0 or 1

isc_dpb_num_buffers Number of database cache buffers to allocate for
use with the database; default=75

1 Number of buffers to
allocate

isc_dpb_password String password, up to 255 characters Number of bytes
in string

String containing
password

isc_dpb_password_enc String encrypted password, up to 255 characters Number of bytes
in string

String containing
password

isc_dpb_sys_user_name String system DBA name, up to 255 characters Number of bytes
in string

String containing
SYSDBA name

isc_dpb_user_name String user name, up to 255 characters Number of bytes
in string

String containing user
name

Parameter Purpose Length Value

TABLE 4.3 Alphabetical list of DPB parameters (continued)

CHAPTER 4 WORKING WITH DATABASES

46 INTERBASE 5

Note Some parameters, such as isc_dpb_delete_shadow, are directives that do not
require additional parameters. Even so, you must still provide length and value bytes for
these parameters. Set length to 1 and value to 0. InterBase ignores these parameter
values, but they are required to maintain the format of the DPB.

Adding parameters to a DPB
Sometimes it is useful to add parameters to an existing DPB at run time. For example,
when an application runs, it might determine a user’s name and password and supply
those values dynamically. The isc_expand_dpb() function can be used to pass the following
additional parameters to a previously created and populated DPB at run time:

IMPORTANT If you expect to add any of these parameters at run time, then create a larger than
necessary DPB before calling isc_expand_dpb(), so that this function does not need to
reallocate DPB storage space at run time. isc_expand_dbp() can reallocate space, but that
space is not automatically freed when the database is detached.

isc_expand_dpb() requires the following parameters:

The third parameter in the table, …, indicates a variable number of replaceable
parameters, each with different names, but each a character pointer.

Parameter Purpose

isc_dpb_user_name String user name, up to 255 characters

isc_dpb_password String password, up to 255 characters

isc_dpb_lc_messages String specifying a language-specific message file

isc_dpb_lc_ctype String specifying the character set to be utilized

TABLE 4.4 DPB parameters recognized by isc_expand_dpb()

Parameter Type Description

dpb char ** Pointer to a DPB

dpb_size unsigned short * Pointer to the current size, in bytes, of the DPB

… char * Pointers to item type and items to add to the DPB

TABLE 4.5 isc_expand_dbp() parameters

CONNECTING TO DATABASES

API GUIDE 47

The following code demonstrates how isc_expand_dpb() is called to add a user name and
password to the DPB after they are elicited from a user at run time:

char dpb_buffer[256], *dpb, *p;

char uname[256], upass[256];

short dpb_length;

/* Construct a database parameter buffer. */

dpb = dpb_buffer;

*dpb++ = isc_dpb_version1;

*dpb++ = isc_num_buffers;

*dpb++ = 1;

*dpb++ = 90;

dpb_length = dpb - dpb_buffer;

/* Now ask user for name and password. */

prompt_user("Enter your user name: ");

gets(uname);

prompt_user("\nEnter your password: ");

gets(upass);

/* Add user name and password to DPB. */

dpb = dbp_buffer;

isc_expand_dpb(&dpb, &dpb_length,

isc_dpb_user_name, uname,

isc_dpb_password, upass,

NULL);

Attaching to a database
After creating and initializing a database handle, and optionally setting up a DPB to
specify connection parameters, use isc_attach_database() to establish a connection to an
existing database. Besides allocating system resources for the database connection,
isc_attach_database() also associates a specific database with a database handle for use in
subsequent API calls that require a handle.

isc_attach_database() expects six parameters:

g A pointer to an error status array, where attachment errors can be reported should they
occur.

g The length, in bytes, of the database name for the database to open. If the database name
includes a node name and path, these elements must be counted in the length argument.

CHAPTER 4 WORKING WITH DATABASES

48 INTERBASE 5

g A string containing the name of the database to attach. The name can include a node
name and path specification.

g A pointer to a previously declared and initialized database handle with which to associate
the database to attach. All subsequent API calls use the handle to specify access to this
database.

g The length, in bytes, of the DPB. If no DPB is passed, set this value to zero.

g A pointer to the DPB. If no DPB is passed, set this to NULL.

Each database attachment requires a separate call to isc_attach_database().

The following code establishes an attachment to the InterBase example database,
employee.gdb, and specifies a DPB to use for the attachment:

#include <ibase.h>

. . .

isc_db_handle db1;

char dpb_buffer[256], *dpb, *p;

short dpb_length;

char *str = "employee.gdb";

ISC_STATUS status_vector[20];

. . .

/* Set database handle to zero before attaching to a database. */

db1 = 0L;

/* Initialize the DPB. */

dpb = dpb_buffer;

*dpb++ = isc_dpb_version1;

*dpb++ = isc_num_buffers;

*dpb++ = 1;

*dpb++ = 90;

dpb_length = dpb - dpb_buffer;

/* Attach to the database. */

isc_attach_database(status_vector, strlen(str), str, &db1,

dpb_length,

dbp_buffer);

if (status_vector[0] == 1 && status_vector[1])

{

error_exit();

}

. . .

The following code illustrates how to attach to a database without passing a DPB:

#include <ibase.h>

REQUESTING INFORMATION ABOUT AN ATTACHMENT

API GUIDE 49

. . .

isc_db_handle db1;

char *str = "employee.gdb";

ISC_STATUS status_vector[20];

. . .

/* Set database handle to zero before attaching to a database. */

db1 = 0L;

/* Attach to the database. */

isc_attach_database(status_vector, strlen(str), str, &db1, 0, NULL);

if (status_vector[0] == 1 && status_vector[1])

{

error_exit();

}

. . .

Requesting information about an attachment
After an application attaches to a database, it may need information about the
attachment. The isc_database_info() call enables an application to query for attachment
information, such as the version of the on-disk structure (ODS) used by the attachment,
the number of database cache buffers allocated, the number of databases pages read from
or written to, or write-ahead log information.

In addition to a pointer to the error status vector and a database handle, isc_database_info()
requires two application-provided buffers, a request buffer, where the application
specifies the information it needs, and a result buffer, where InterBase returns the
requested information. An application populates the request buffer with information
prior to calling isc_database_info(), and passes it both a pointer to the request buffer, and
the size, in bytes, of that buffer.

The application must also create a result buffer large enough to hold the information
returned by InterBase. It passes both a pointer to the result buffer, and the size, in bytes,
of that buffer, to isc_database_info(). If InterBase attempts to pass back more information
than can fit in the result buffer, it puts the value, isc_info_truncated, defined in ibase.h,
in the final byte of the result buffer.

CHAPTER 4 WORKING WITH DATABASES

50 INTERBASE 5

Requesting buffer items and result buffer values
The request buffer is a char array into which is placed a sequence of byte values, one per
requested item of information. Each byte is an item type, specifying the kind of
information desired. Compile-time constants for all item types are defined in ibase.h.

The result buffer returns a series of clusters of information, one per item requested. Each
cluster consists of three parts:

1. A one-byte item return type. There are compile-time constants defined for all
the item return types in ibase.h.

2. A two-byte number specifying the number of bytes that follow in the
remainder of the cluster.

3. A value, stored in a variable number of bytes, whose interpretation (for
example, as a number or as a string of characters) depends on the item return
type.

A calling program is responsible for interpreting the contents of the result buffer and for
deciphering each cluster as appropriate. In many cases, the value simply contains a
number or a string (sequence of characters). But in other cases, the value is a number of
bytes whose interpretation depends on the item return type.

The clusters returned to the result buffer are not aligned. Furthermore, all numbers are
represented in a generic format, with the least significant byte first, and the most
significant byte last. Signed numbers have the sign in the last byte. Convert the numbers
to a datatype native to your system, if necessary, before interpreting them. The API call,
isc_vax_integer(), can be used to perform the conversion.

4 Database characteristics
Several items are available for determining database characteristics, such as its size and
major and minor ODS version numbers. The following table lists the request buffer items
that can be passed, and the information returned in the result buffer for each item type:

Request buffer item Result buffer contents

isc_info_allocation Number of database pages allocated

isc_info_base_level Database version (level) number:

• 1 byte containing the number 1
• 1 byte containing the version number

TABLE 4.6 Database information items for database characteristics

REQUESTING INFORMATION ABOUT AN ATTACHMENT

API GUIDE 51

isc_info_db_id • Database file name and site name:
• 1 byte containing the number 2 for a local connection or 4 for a

remote connection
• 1 byte containing the length, d, of the database file name in bytes
• A string of d bytes, containing the database file name
• 1 byte containing the length, l, of the site name in bytes
• A string of l bytes, containing the site name

isc_info_implementation Database implementation number:

• 1 byte containing a 1
• 1 byte containing the implementation number
• 1 byte containing a “class” number, either 1 or 12

isc_info_no_reserve 0 or 1

• 0 indicates space is reserved on each database page for holding
backup versions of modified records [Default]

• 1 indicates no space is reserved for such records

isc_info_ods_minor_version On-disk structure (ODS) minor version number; an increase in a minor
version number indicates a non-structural change, one that still allows
the database to be accessed by database engines with the same major
version number but possibly different minor version numbers

isc_info_ods_version ODS major version number; databases with different major version
numbers have different physical layouts

A database engine can access only databases with a particular ODS
major version number; trying to attach to a database with a different
ODS number results in an error

isc_info_page_size Number of bytes per page of the attached database; use with
isc_info_allocation to determine the size of the database

isc_info_version Version identification string of the database implementation:

• 1 byte containing the number 1
• 1 byte specifying the length, n, of the following string
• n bytes containing the version identification string

Request buffer item Result buffer contents

TABLE 4.6 Database information items for database characteristics (continued)

CHAPTER 4 WORKING WITH DATABASES

52 INTERBASE 5

4 Environmental characteristics
Several items are provided for determining environmental characteristics, such as
the amount of memory currently in use, or the number of database cache buffers
currently allocated. These items are described in the following table:

Note Not all environmental information items are available on all platforms.

4 Performance statistics
There are four items that request performance statistics for a database. These statistics
accumulate for a database from the moment it is first attached by any process until the
last remaining process detaches from the database.

For example, the value returned for isc_info_reads is the number of reads since the
current database was first attached, that is, an aggregate of all reads done by all attached
processes, rather than the number of reads done for the calling program since it attached
to the database.

Request buffer item Result buffer contents

isc_info_current_memory Amount of server memory (in bytes) currently in use

isc_info_forced_writes Number specifying the mode in which database writes are performed (0
for asynchronous, 1 for synchronous)

isc_info_max_memory Maximum amount of memory (in bytes) used at one time since the first
process attached to the database

isc_info_num_buffers Number of memory buffers currently allocated

isc_info_sweep_interval Number of transactions that are committed between “sweeps” to remove
database record versions that are no longer needed

isc_info_user_names Names of all the users currently attached to the database; for each such
user, the result buffer contains an isc_info_user_names byte followed by
a 1-byte length specifying the number of bytes in the user name, followed
by the user name

TABLE 4.7 Database information items for environmental characteristics

REQUESTING INFORMATION ABOUT AN ATTACHMENT

API GUIDE 53

Table 4.8 lists the request performance statistics are summarized in the following table:

4 Database operation counts
Several information items are provided for determining the number of various database
operations performed by the currently attached calling program. These values are
calculated on a per-table basis.

When any of these information items is requested, InterBase returns to the result buffer:

g 1 byte specifying the item type (for example, isc_info_insert_count).

g 2 bytes telling how many bytes compose the subsequent value pairs.

g A pair of values for each table in the database on which the requested type of operation
has occurred since the database was last attached.

Each pair consists of:

g 2 bytes specifying the table ID.

g 4 bytes listing the number of operations (for example, inserts) done on that table.

TIP To determine an actual table name from a table ID, query the system table,
RDB$RELATION.

Request buffer item Result buffer contents

isc_info_fetches Number of reads from the memory buffer cache

isc_info_marks Number of writes to the memory buffer cache

isc_info_reads Number of page reads

isc_info_writes Number of page writes

TABLE 4.8 Database information items for performance statistics

CHAPTER 4 WORKING WITH DATABASES

54 INTERBASE 5

The following table describes the items which return count values for operations on the
database:

isc_database_info() call example
The following code requests the page size and the number of buffers for the currently
attached database, then examines the result buffer:

char db_items[] = {

isc_info_page_size, isc_info_num_buffers,

isc_info_end};

char res_buffer[40], *p, item;

int length;

SLONG page_size = 0L, num_buffers = 0L;

ISC_STATUS status_vector[20];

isc_database_info(

status_vector,

Request buffer item Result buffer contents

isc_info_backout_count Number of removals of a version of a record

isc_info_delete_count Number of database deletes since the database was last attached

isc_info_expunge_count Number of removals of a record and all of its ancestors, for records
whose deletions have been committed

isc_info_insert_count Number of inserts into the database since the database was last
attached

isc_info_purge_count Number of removals of old versions of fully mature records (records
committed, resulting in older—ancestor—versions no longer being
needed)

isc_info_read_idx_count Number of reads done via an index since the database was last
attached

isc_info_read_seq_count Number of sequential database reads, that is, the number of sequential
table scans (row reads) done on each table since the database was last
attached

isc_info_update_count Number of database updates since the database was last attached

TABLE 4.9 Database information items for operation counts

DISCONNECTING FROM DATABASES

API GUIDE 55

&handle, /* Set in previous isc_attach_database() call. */

sizeof(db_items),

db_items,

sizeof(res_buffer),

res_buffer);

if (status_vector[0] == 1 && status_vector[1]) {

/* An error occurred. */

isc_print_status(status_vector);

return(1);

};

/* Extract the values returned in the result buffer. */

for (p = res_buffer; *p != isc_info_end ;) {

item = *p++

length = isc_vax_integer(p, 2);

p += 2;

switch (item){

case isc_info_page_size:

page_size = isc_vax_integer(p, length);

break;

case isc_info_num_buffers:

num_buffers = isc_vax_integer(p, length);

break;

default:

break;

}

p += length;

};

Disconnecting from databases
When an application is finished accessing a database, and any changes are committed or
rolled back, the application should disconnect from the database, release system
resources allocated for the attachment, and set the database handle to zero with a call to
isc_detach_database().

isc_detach_database() requires two arguments: a pointer to the error status vector, and a
pointer to the handle of the database from which to detach. For example, the following
statement detaches from the database pointed to by the database handle, db1:

isc_detach_database(status_vector, &db1);

 Each database to detach requires a separate call to isc_detach_database().

CHAPTER 4 WORKING WITH DATABASES

56 INTERBASE 5

Deleting a database
To remove a database from the system if it is no longer needed, use isc_drop_database().
This function permanently wipes out a database, erasing its data, metadata, and all of its
supporting files, such as secondary files, shadow files, and write-ahead log files.

A database can only be deleted if it is previously attached with a call to
isc_attach_database(). The call to isc_attach_database() establishes a database handle for the
database. That handle must be passed in the call to isc_drop_database().

For example, the following code deletes the database pointed to by the database handle,
db1:

#include <ibase.h>

. . .

isc_db_handle db1;

char *str = "employee.gdb";

ISC_STATUS status_vector[20];

. . .

/* Set database handle to zero before attaching to a database. */

db1 = 0L;

/* Attach to the database. */

isc_attach_database(status_vector, strlen(str), str, &db1, 0, NULL);

if (status_vector[0] == 1 && status_vector[1])

{

error_exit();

}

isc_drop_database(status_vector, &db1);

if (status_vector[0] == 1 && status_vector[1])

{

error_exit();

}

. . .

API GUIDE 57

CHAPTER

5
Chapter 5Working with Transactions

This chapter describes how to set up a transaction parameter buffer (TPB) that contains
parameters, how to set up and initialize transaction handles, and how to use the API
functions that control transactions. It also explains how to retrieve a transaction ID.

All data definition and data manipulation in an application takes place in the context of
one or more transactions, one or more statements that work together to complete a
specific set of actions that must be treated as an atomic unit of work.

The following table summarizes the API functions most commonly used when working
with transactions. Functions are listed in the order they typically appear in an application.

Function Purpose

isc_start_transaction() Starts a new transaction against one or more databases.; use a
previously declared and populated TPB

isc_commit_retaining() Commits a transaction’s changes, and preserves the transaction
context for further transaction processing

isc_commit_transaction() Commits a transaction’s changes, and ends the transaction

isc_rollback_transaction() Rolls back a transaction’s changes, and ends the transaction

TABLE 5.1 API transaction functions

CHAPTER 5 WORKING WITH TRANSACTIONS

58 INTERBASE 5

In addition to these functions, the following table lists less frequently used API
transaction functions in the order they typically appear when used:

Starting transactions
Starting transactions is a three-step process:

1. Creating and initializing a transaction handle for each simultaneous
transaction to be started.

2. Optionally creating and populating a TPB for each transaction.

3. Calling isc_start_transaction() for each transaction to start.

These steps are described in the following sections of this chapter.

Note Programmers writing applications that do not permit function calls to pass a
variable number of parameters must use isc_start_multiple() instead of isc_start_transaction().

Creating transaction handles
Every transaction that is used in an application must be associated with its own
transaction handle, a pointer to an address that is used by all API transaction functions.
The ibase.h header file contains the following C typedef declaration for transaction
handles:

typedef void ISC_FAR *isc_tr_handle;

Function Purpose

isc_start_multiple() Starts a new transaction against one or more databases; used
instead of isc_start_transaction() for programming languages such
as FORTRAN, that do not support variable numbers of arguments to
functions

isc_prepare_transaction() Performs the first phase of a two-phase commit, prior to calling
isc_commit_transaction(); used only when it is absolutely necessary
to override InterBase’s automatic two-phase commit

isc_prepare_transaction2() Performs the first phase of a two-phase commit, prior to calling
isc_commit_transaction(); used only when absolutely necessary to
override InterBase’s automatic two-phase commit

TABLE 5.2 Additional API transaction functions

STARTING TRANSACTIONS

API GUIDE 59

To use this typedef for declaring transaction handles in an application, include ibase.h in
each source file module:

#include <ibase.h>

4 Declaring transaction handles
To establish transaction handles for use, declare a variable of type isc_tr_handle for each
simultaneously active transaction. The following code declares two handles:

#include <ibase.h>

. . .

isc_tr_handle tr1;

iac_tr_handle tr2;

Once a transaction is committed or rolled back, its handle can be assigned to a different
transaction in a subsequent call to isc_start_transaction(). If an application uses several
transactions, but only starts a subset of transactions at the same time, it is only necessary
to declare as many handles as there will be simultaneously active transactions. For
example, if an application starts a total of three transactions, but only runs two of them
at the same time, only two transaction handles need be declared.

4 Initializing transaction handles
Before a transaction handle can be used to start a new transaction, it must be set to zero.
The following code illustrates how two transaction handles are set to zero:

#include <ibase.h>

. . .

isc_tr_handle tr1;

isc_tr_handle tr2;

. . .

/* Set transaction handles to zero before starting a transaction. */

tr1 = 0L;

tr2 = 0L;

Once a transaction handle is initialized to zero, it can be used in a call to
isc_start_transaction() to establish a new transaction. If a nonzero transaction handle is
passed to isc_start_transaction(), the startup fails and an error code is returned. For more
information about starting a new transaction with isc_start_transaction(), see “Calling
isc_start_transaction()” on page 67.

CHAPTER 5 WORKING WITH TRANSACTIONS

60 INTERBASE 5

Creating a transaction parameter buffer
The transaction parameter buffer (TPB) is an optional, application-defined byte vector,
passed as an argument to isc_start_transaction(), that sets up a transaction’s attributes, its
operating characteristics, such as whether the transaction has read and write access to
tables, or read-only access, and whether or not other simultaneously active transactions
can share table access with the transaction. Each transaction may have its own TPB, or
transactions that share operating characteristics can use the same TPB.

Note If a TPB is not created for a transaction, a NULL pointer must be passed to
isc_start_transaction() in its place. A default set of attributes is automatically assigned to
such transactions. For more information about the default TPB, see “Using the default
TPB” on page 67.

A TPB is declared in a C program as a char array of one-byte elements. Each element is
a parameter that describes a single transaction attribute. A typical declaration is as
follows:

static char isc_tpb[] = {isc_tpb_version3,

isc_tpb_write,

isc_tpb_read_committed,

isc_tpb_no_rec_version,

isc_tpb_wait};

This example makes use of parameter constants defined in the InterBase header file,
ibase.h. The first element in every TPB must be the isc_tpb_version3 constant. The
following table lists available TPB constants, describes their purposes, and indicates
which constants are assigned as a default set of attributes when a NULL TPB pointer is
passed to isc_start_transaction():

Parameter Description

isc_tpb_version3 InterBase version 3 transaction

isc_tpb_consistency Table-locking transaction model

isc_tpb_concurrency High throughput, high concurrency transaction with acceptable
consistency; use of this parameter takes full advantage of the InterBase
multi-generational transaction model [Default]

isc_tpb_shared Concurrent, shared access of a specified table among all transactions; use
in conjunction with isc_tpb_lock_read and isc_tpb_lock_write to
establish the lock option [Default]

TABLE 5.3 TPB constants

STARTING TRANSACTIONS

API GUIDE 61

TPB parameters specify the following classes of information:

g Transaction version number is used internally by the InterBase engine. It is always be
the first attribute specified in the TPB, and must always be set to isc_tpb_version3.

isc_tpb_protected Concurrent, restricted access of a specified table; use in conjunction with
isc_tpb_lock_read and isc_tpb_lock_write to establish the lock option

isc_tpb_wait Lock resolution specifies that the transaction is to wait until locked
resources are released before retrying an operation [Default]

isc_tpb_nowait Lock resolution specifies that the transaction is not to wait for locks to be
released, but instead, a lock conflict error should be returned immediately

isc_tpb_read Read-only access mode that allows a transaction only to select data from
tables

isc_tpb_write Read-write access mode of that allows a transaction to select, insert,
update, and delete table data [Default]

isc_tpb_lock_read Read-only access of a specified table. Use in conjunction with
isc_tpb_shared, isc_tpb_protected, and isc_tpb_exclusive to establish the
lock option.

isc_tpb_lock_write Read-write access of a specified table. Use in conjunction with
isc_tpb_shared, isc_tpb_protected, and isc_tpb_exclusive to establish the
lock option [Default]

isc_tpb_read_committed High throughput, high concurrency transaction that can read changes
committed by other concurrent transactions. Use of this parameter takes
full advantage of the InterBase
multi-generational transaction model.

isc_tpb_rec_version Enables an isc_tpb_read_committed transaction to read the most recently
committed version of a record even if other, uncommitted versions are
pending.

isc_tpb_no_rec_version Enables an isc_tpb_read_committed transaction to read only the latest
committed version of a record. If an uncommitted version of a record is
pending and isc_tpb_wait is also specified, then the transaction waits for
the pending record to be committed or rolled back before proceeding.
Otherwise, a lock conflict error is reported at once.

Parameter Description

TABLE 5.3 TPB constants (continued)

CHAPTER 5 WORKING WITH TRANSACTIONS

62 INTERBASE 5

g Access mode describes the actions that can be performed by the functions associated with
the transaction. Valid access modes are:

isc_tpb_read

isc_tpb_write

g Isolation level describes the view of the database given a transaction as it relates to
actions performed by other simultaneously occurring transactions. Valid isolation levels
are:

isc_tpb_concurrency

isc_tpb_consistency

isc_tpb_read_committed, isc_tpb_rec_version

isc_tpb_read_committed, isc_tpb_no_rec_version

g Lock resolution describes how a transaction should react if a lock conflict occurs. Valid
lock resolutions are:

isc_tpb_wait

isc_tpb_nowait

g Table reservation optionally describes an access method and lock resolution for a
specified table that the transaction accesses. When table reservation is used, tables are
reserved for the specified access when the transaction is started, rather than when the
transaction actually accesses the table. Valid reservations are:

isc_tpb_shared, isc_tpb_lock_write

isc_tpb_shared, isc_tpb_lock_read

isc_tpb_protected, isc_tpb_lock_write

isc_tpb_protected, isc_tpb_lock_read

TPB parameters are described in detail in the following sections.

4 Specifying the transaction version number
The first parameter in a TPB must always specify the version number for transaction
processing. It must always be set to isc_tpb_version3. The following TPB declaration
illustrates the correct use and position of this parameter:

static char isc_tpb[] = {isc_tpb_version3, ...};

STARTING TRANSACTIONS

API GUIDE 63

4 Specifying access mode
The access mode parameter describes the actions a transaction can perform against a
table. The default access mode, isc_tpb_write, enables a transaction to read data from a
table and write data to it. A second access mode, isc_tpb_read, restricts table access to
read only. For example, the following TPB declaration specifies a read-only transaction:

static char isc_tpb[] = {isc_tpb_version3, isc_tpb_read};

A TPB should only specify one access mode parameter. If more than one is specified, later
declarations override earlier ones.

If a TPB is declared that omits the access mode parameter, InterBase interprets
transaction access as read and write.

4 Specifying isolation level
The isolation level parameter specifies the view of the database permitted a transaction
as it relates to actions performed by other simultaneously occurring transactions.

ISC_TPB_CONCURRENCY

By default, after a transaction starts it cannot access committed changes to a table made
by other simultaneous transactions, even though it shares access to the table with them.
Such a transaction has an isolation level of isc_tpb_concurrency, meaning it can have
concurrent access to tables also accessed simultaneously by other transactions. The
following declaration creates a TPB specifying an isolation level of isc_tpb_concurrency:

static char isc_tpb[] = {isc_tpb_version3,

isc_tpb_write,

isc_tpb_concurrency};

ISC_TPB_READ_COMMITTED

A second isolation level, isc_tpb_read_committed, offers all the advantages of the
isc_tpb_concurrency isolation level and additionally enables a transaction to access
changes committed by other simultaneous transactions. Two other parameters,
isc_tpb_rec_version, and isc_tpb_no_rec_version, should be used with the
isc_tpb_read_committed parameter. They offer refined control over the committed
changes a transaction is permitted to access:

· isc_tpb_no_rec_version, the default refinement, specifies that a transaction can only
read the latest version of a row. If a change to a row is pending, but not yet committed,
the row cannot be read.

· isc_tpb_rec_version specifies that a transaction can read the latest committed version
of a row, even if a more recent uncommitted version is pending.

CHAPTER 5 WORKING WITH TRANSACTIONS

64 INTERBASE 5

The following declaration creates a TPB with a read committed isolation level, and
specifies that the transaction can read the latest committed version of a row:

static char isc_tpb[] = {isc_tpb_version3,

isc_tpb_write,

isc_tpb_read_committed,

isc_tpb_rec_version};

ISC_TPB_CONSISTENCY

InterBase also supports a restrictive isolation level. isc_tpb_consistency prevents a
transaction from accessing tables if they are written to by other transactions; it also
prevents other transactions from writing to a table once this transaction writes to it. This
isolation level is designed to guarantee that if a transaction writes to a table before other
simultaneous read and write transactions, then only it can change a table’s data. Because
it essentially restricts (and often prevents) shared access to tables, isc_tpb_consistency
should be used with care.

A TPB should only specify one isolation mode parameter (and one refinement parameter,
if isolation mode is isc_tpb_read_committed). If more than one is specified, later
declarations override earlier ones.

If a TPB is declared that omits the isolation mode parameter, InterBase interprets it as
isc_tpb_concurrency.

ISOLATION LEVEL INTERACTIONS

To determine the possibility for lock conflicts between two transactions accessing the
same database, each transaction’s isolation level and access mode must be considered.
The following table summarizes possible combinations:

isc_tpb_concurrency,
isc_tpb_read_committed isc_tpb_consistency

isc_tpb_write isc_tpb_read isc_tpb_write isc_tpb_read

concurrency,
read_committed

isc_tpb_write Some simultaneous
updates may conflict

— Conflicts Conflicts

isc_tpb_read — — — —

consistency isc_tpb_write Conflicts — Conflicts Conflicts

isc_tpb_read Conflicts — Conflicts —

TABLE 5.4 Isolation level interaction with read and write operations

STARTING TRANSACTIONS

API GUIDE 65

As this table illustrates, isc_tpb_concurrency and isc_tpb_read_committed transactions
offer the least chance for conflicts. For example, if t1 is an isc_tpb_concurrency
transaction with isc_tpb_write access, and t2 is an isc_tpb_read_committed transaction
with isc_tpb_write access, t1 and t2 only conflict when they attempt to update the same
rows. If t1 and t2 have isc_tpb_read access, they never conflict with other transactions.

An isc_tpb_consistency transaction with isc_tpb_write access is guaranteed that if it gains
access to a table that it alone can update a table, but it conflicts with all other
simultaneous transactions except for isc_tpb_concurrency and isc_tpb_read_committed
transactions running in isc_tpb_read mode. An isc_tpb_consistency transaction with
isc_tpb_read access is compatible with any other read-only transaction, but conflicts with
any transaction that attempts to insert, update, or delete data.

4 Specifying lock resolution
The lock resolution parameter describes what happens if a transaction encounters an
access conflict during a write operation (update and delete operations on existing rows).
There are two possible choices for this parameter:

g isc_tpb_wait, the default, specifies that the transaction should wait until locked resources
are released. Once the resources are released, the transaction retries its operation.

g isc_tpb_nowait specifies that the transaction should return a lock conflict error without
waiting for locks to be released.

For example, the following declaration creates a TPB with write access, a concurrency
isolation mode, and a lock resolution of isc_tpb_nowait:

static char isc_tpb[] = {isc_tpb_version3,

isc_tpb_write,

isc_tpb_concurrency,

isc_tpb_nowait};

A TPB should only specify one lock resolution parameter. If more than one is specified,
later declarations override earlier ones.

If a TPB is declared that omits the lock resolution parameter, InterBase interprets it as
isc_tpb_concurrency.

CHAPTER 5 WORKING WITH TRANSACTIONS

66 INTERBASE 5

4 Specifying table reservation
Ordinarily, transactions gain specific access to tables only when they actually read from
or write to them. Optional table reservation parameters can be passed in the TPB. Table
reservation optionally describes an access method and lock resolution for a specified
table that the transaction accesses. When table reservation is used, tables are reserved for
the specified access when the transaction is started, rather than when the transaction
actually accesses the table. Table reservation is only useful in an environment where
simultaneous transactions share database access. It has three main purposes:

g Prevent possible deadlocks and update conflicts that can occur if locks are taken only
when actually needed (the default behavior).

g Provide for dependency locking, the locking of tables that may be affected by triggers and
integrity constraints. While explicit dependency locking is not required, it can assure that
update conflicts do not occur because of indirect table conflicts.

g Change the level of shared access for one or more individual tables in a transaction. For
example, an isc_tpb_write transaction with an isolation level of isc_tpb_concurrency
may need exclusive update rights for a single table, and could use a reservation
parameter to guarantee itself sole write access to the table.

Valid reservations are:

· isc_tpb_shared, isc_tpb_lock_write, which permits any transaction with an access mode
of isc_tpb_write and isolation levels of isc_tpb_concurrency or
isc_tpb_read_committed, to update, while other transactions with these isolation levels
and an access mode of isc_tpb_read can read data.

· isc_tpb_shared, isc_tpb_lock_read, which permits any transaction to read data, and any
transaction with an access mode of isc_tpb_write to update. This is the most liberal
reservation mode.

· isc_tpb_protected, isc_tpb_lock_write, which prevents other transactions from
updating. Other transactions with isolation levels of isc_tpb_concurrency or
isc_tpb_read_committed can read data, but only this transaction can update.

· isc_tpb_protected, isc_tpb_lock_read, which prevents all transactions from updating,
but permits all transactions to read data.

The name of the table to reserve must immediately follow the reservation parameters. For
example, the following TPB declaration reserves a table, EMPLOYEE, for protected read
access:

static char isc_tpb[] = {isc_tpb_version3,

isc_tpb_write,

isc_tpb_concurrency,

STARTING TRANSACTIONS

API GUIDE 67

isc_tpb_nowait,

isc_tpb_protected, isc_tpb_lock_read, "EMPLOYEE"};

Several tables can be reserved at the same time. The following declaration illustrates how
two tables are reserved, one for protected read, the other for protected write:

static char isc_tpb[] = {isc_tpb_version3,

isc_tpb_write,

isc_tpb_concurrency,

isc_tpb_nowait,

isc_tpb_protected, isc_tpb_lock_read, "COUNTRY",

isc_tpb_protected, isc_tpb_lock_write, "EMPLOYEE"};

4 Using the default TPB
Providing a TPB for a transaction is optional. If one is not provided, then a NULL pointer
must be passed to isc_start_transaction() in place of a pointer to the TPB. In this case,
InterBase treats a transaction as if the following TPB had been declared for it:

static char isc_tpb[] = {isc_tpb_version3,

isc_tpb_write,

isc_tpb_concurrency,

isc_tpb_wait};

Calling isc_start_transaction()
Once transaction handles and TPBs are prepared, a transaction can be started by calling
isc_start_transaction() using the following syntax:

ISC_STATUS isc_start_transaction(

ISC_STATUS *status vector,

isc_tr_handle *trans_handle,

short db_count,

isc_db_handle *&db_handle,

unsigned short tpb_length,

char *tpb_ad);

For a transaction that runs against a single database, set db_count to 1. db_handle
should be a database handle set with a previous call to isc_attach_database(). tpb_length is
the size of the TPB passed in the next parameter, and tpb_ad is the address of the TPB.
The following code illustrates a typical call to isc_start_transaction():

#include <ibase.h>

. . .

CHAPTER 5 WORKING WITH TRANSACTIONS

68 INTERBASE 5

ISC_STATUS status_vector[20];

isc_db_handle db1;

isc_tr_handle tr1;

static char isc_tbp[] = {isc_tpb_version3,

isc_tpb_write,

isc_tpb_concurrency,

isc_tpb_wait};

. . .

/* Initialize database and transaction handles here. */

db1 = 0L;

tr1 = 0L;

. . .

/* Code for attaching to database here is omitted. */

isc_start_transaction(status_vector,

&tr1,

1,

&db1,

(unsigned short) sizeof(isc_tpb),

isc_tpb);

A transaction can be opened against multiple databases. To do so, set the db_count
parameter to the number of databases against which the transaction runs, then for each
database, repeat the db_handle, tpb_length, and tpb_ad parameters as a group once for
each database. For example, the following code fragment assumes that two databases are
connected when the transaction is started:

isc_start_transaction(status_vector,

&tr1,

2,

&db1,

(unsigned short) sizeof(isc_tpb),

&tpb);

&db2,

(unsigned short) sizeof(isc_tpb),

&tpb);

For the complete syntax of isc_start_transaction(), see page 327.

STARTING TRANSACTIONS

API GUIDE 69

Calling isc_start_multiple()
An alternate method for starting a transaction against multiple databases is to use
isc_start_multiple(). Using isc_start_multiple() is not recommended unless you:

g Are using a language that does not support a variable number of arguments in a function
call.

g Do not know how many databases you want to attach to when coding the start of a
transaction.

C programmers should seldom need to use this function.

isc_start_multiple() passes information about each target database to InterBase through an
array of transaction existence blocks (TEBs). There must be one TEB for each database
against which a transaction runs. A TEB is a structure you must declare in your
applications as follows:

typdef struct {

long *db_ptr;

long tpb_len;

char *tpb_ptr;

} ISC_TEB;

db_ptr is a pointer to a previously declared, initialized, and populated database handle.
tpb_len is the size, in bytes, of the transaction parameter buffer (TPB) to use for the
database, and tpb_ptr is a pointer to the TPB itself. For information about declaring,
initializing, and populating a database handle, see “Creating database handles” on
page 40. For more information about creating and populating a TPB, see “Creating a
transaction parameter buffer” on page 60.

To use a TEB structure in an application, declare an array variable of type ISC_TEB. The
number of array dimensions should correspond to the number of databases that the
transaction runs against. For example, the following declaration creates an array of two
TEBs, capable of supporting two databases:

ISC_TEB teb_array[2];

Once an array of TEBs is declared, and corresponding TBPs are created and populated
for each database, values may be assigned to the appropriate fields in the TEBs. For
example, the following code illustrates how two TEBs are filled:

. . .

ISC_STATUS status_vector[20];

isc_db_handle db1, db2;

isc_tr_handle trans;

ISC_TEB teb_array[2];

CHAPTER 5 WORKING WITH TRANSACTIONS

70 INTERBASE 5

. . .

db1 = db2 = 0L;

trans = 0L;

/* Code assumes that two TPBs, isc_tpb1, and isc_tpb2, are created

here. */

/* Code assumes databases are attached here. */

/* assign values to TEB array */

teb_array[0].db_ptr = &db1;

teb_array[0].tpb_len = sizeof(isc_tpb1);

teb_array[0].tpb_ptr = isc_tpb1;

teb_array[1].db_ptr = &db2;

teb_array[1].tpb_len = sizeof(isc_tpb2);

teb_array[1].tpb_ptr = isc_tpb2;

. . .

After the TEBs are loaded with values, isc_start_multiple() can be called using the following
syntax:

ISC_STATUS isc_start_multiple(

ISC_STATUS *status_vector,

isc_tr_handle *trans_handle,

short db_handle_count,

void *teb_vector_address);

For example, the following statements starts a two-database transaction:

. . .

ISC_STATUS status_vector[20];

isc_db_handle db1, db2;

isc_tr_handle trans;

ISC_TEB teb_array[2];

. . .

db1 = db2 = 0L;

trans = 0L;

/* Code assumes that two TPBs, isc_tpb1, and isc_tpb2, are created

here. */

/* Code assumes databases are attached here. */

/* assign values to TEB array */

teb_array[0].db_ptr = &db1;

teb_array[0].tpb_len = sizeof(isc_tpb1);

teb_array[0].tpb_ptr = isc_tpb1;

teb_array[1].db_ptr = &db2;

teb_array[1].tpb_len = sizeof(isc_tpb2);

teb_array[1].tpb_ptr = isc_tpb2;

ENDING TRANSACTIONS

API GUIDE 71

/* Start the transaction */

isc_start_multiple(status_vector, &trans, 2, teb_array);

. . .

Ending transactions
When a transaction’s tasks are complete, or an error prevents a transaction from
completing, the transaction must be ended to set the database to a consistent state. There
are two API functions that end transactions:

g isc_commit_transaction() makes a transaction’s changes permanent in the database. For
transactions that span databases, this function performs an automatic, two-phase commit
to ensure that all changes are made successfully.

g isc_rollback_transaction() undoes a transaction’s changes, returning the database to its
previous state, before the transaction started. This function is typically used when one or
more errors occur that prevent a transaction from completing successfully.

Both isc_commit_transaction() and isc_rollback_transaction() close the record streams associated
with the transaction, reinitialize the transaction name to zero, and release system
resources allocated for the transaction. Freed system resources are available for
subsequent use by any application or program.

isc_rollback_transaction() is frequently used inside error-handling routines to clean up
transactions when errors occur. It can also be used to roll back a partially completed
transaction prior to retrying it, and it can be used to restore a database to its prior state
if a program encounters an unrecoverable error.

The API offers three additional functions for controlling transactions:

g isc_commit_retaining() commits a transaction but retains the current transaction’s context—
the system resources and cursor states used in the transaction—without requiring the
overhead of ending a transaction, starting a new one, and reestablishing cursor states. In
a busy, multi-user environment, maintaining transaction context for each user speeds up
processing and uses fewer system resources than closing a transaction and opening a new
one.

g isc_prepare_transaction() and isc_prepare_transaction2() enable an application to perform the
first phase of an automatic, two-phase commit in its own time, then issue a call to
isc_commit_transaction() to complete the commit.

CHAPTER 5 WORKING WITH TRANSACTIONS

72 INTERBASE 5

IMPORTANT If the program ends before a transaction ends, a transaction is automatically rolled back,
but databases are not closed. If a program ends without closing the database, data loss
or corruption is possible. Therefore, open databases should always be closed by issuing
an explicit call to isc_detach_database().

For more information about detaching from a database, see Chapter 4, “Working with
Databases.”

Using isc_commit_transaction()
Use isc_commit_transaction() to write transaction changes permanently to a database.
isc_commit_transaction() closes the record streams associated with the transaction, resets the
transaction name to zero, and frees system resources assigned to the transaction for other
uses. The complete syntax for isc_commit_transaction() is:

ISC_STATUS isc_commit_transaction(

ISC_STATUS *status_vector,

isc_tr_handle *trans_handle);

For example, the following call commits a transaction:

isc_commit_transaction(status_vector, &trans);

where status_vector is a pointer to a previously declared error status vector, and trans is
a pointer to a previously declared and initialized transaction handle.

TIP Even transactions started with an access mode of isc_tpb_read should be ended with a
call to isc_commit_transaction() rather than isc_rollback_transaction(). The database is not
changed, but the overhead required to start subsequent transactions is greatly reduced.

4 Using isc_commit_retaining()
To write transaction changes to the database without establishing a new transaction
context—the names, system resources, and current state of cursors used in a
transaction—use isc_commit_retaining() instead of isc_commit_transaction(). In a busy,
multi-user environment, maintaining the transaction context for each user speeds up
processing and uses fewer system resources than closing and starting a new transaction
for each action. The complete syntax for isc_commit_retaining() is:

ISC_STATUS isc_commit_retaining(

ISC_STATUS *status_vector,

isc_tr_handle *trans_handle);

ENDING TRANSACTIONS

API GUIDE 73

isc_commit_retaining() writes all pending changes to the database, ends the current
transaction without closing its record stream and cursors and without freeing its system
resources, then starts a new transaction and assigns the existing record streams and
system resources to the new transaction.

For example, the following call commits a specified transaction, preserving the current
cursor status and system resources:

isc_commit_retaining(status_vector, &trans);

where status_vector is a pointer to a previously declared error status vector, and trans is
a pointer to a previously declared and initialized transaction handle.

A call to isc_rollback_transaction() issued after isc_commit_retaining() only rolls back updates
and writes occurring after the call to isc_commit_retaining().

4 Using isc_prepare_transaction()
When a transaction is committed against multiple databases using isc_commit_transaction(),
InterBase automatically performs a two-phase commit. During the first phase of the
commit, the InterBase engine polls all database participants to make sure they are still
available, writes a message describing the transaction to the
RDB$TRANSACTION_DESCRIPTION field of the RDB$TRANSACTION system table, then puts the
transaction into a limbo state. It is during the second phase that transaction changes are
actually committed to the database.

Some applications may have their own, additional requirements to make of the two-phase
commit. These applications can call isc_prepare_transaction() to execute the first phase of the
two-phase commit, then perform their own, additional tasks before completing the
commit with a call to isc_commit_transaction().

The syntax for isc_prepare_transaction() is:

ISC_STATUS isc_prepare_transaction(

ISC_STATUS *status_vector,

isc_tr_handle *trans_handle);

For example, the following code fragment illustrates how an application might call
isc_prepare_transaction(), then its own routines, before completing a commit with
isc_commit_transaction():

ISC_STATUS status_vector[20];

isc_db_handle db1;

isc_tr_handle trans;

. . .

/* Initialize handles. */

db1 = 0L;

CHAPTER 5 WORKING WITH TRANSACTIONS

74 INTERBASE 5

trans = 0L;

. . .

/* Code assumes a database is attached here, */

/* and a transaction started. */

. . .

/* Perform first phase of two-phase commit. */

isc_prepare_transaction(status_vector, &trans);

/* Application does its own processing here. */

my_app_function();

/* Now complete the two-phase commit. */

isc_commit_transaction(status_vector, &trans);

IMPORTANT It is generally a dangerous practice to delay the second phase of the commit after
completing the first, because delays increase the chance that network or server problems
can occur between phases.

Using isc_prepare_transaction2()
Like isc_prepare_transaction(), isc_prepare_transaction2() performs the first phase of a
two-phase commit, except that isc_prepare_transaction2() enables
an application to supply its own transaction description for insertion into the
RDB$TRANSACTION_DESCRIPTION field of the RDB$TRANSACTION
system table.

IMPORTANT Do not use this call without first examining and understanding the information
InterBase stores in RDB$TRANSACTION_DESCRIPTION during an automatic, two-phase
commit. Storage of improper or incomplete information can prevent database recovery
if the two-phase commit fails.

See page 312 for the complete syntax of isc_prepare_transaction2().

ENDING TRANSACTIONS

API GUIDE 75

Using isc_rollback_transaction()
Use isc_rollback_transaction() to restore the database to its condition prior to the start of the
transaction. isc_rollback_transaction() also closes the record streams associated with the
transaction, resets the transaction name to zero, and frees system resources assigned to
the transaction for other uses. isc_rollback_transaction() typically appears in error-handling
routines. The syntax for isc_rollback_transaction() is:

ISC_STATUS isc_rollback_transaction(

ISC_STATUS *status_vector,

isc_tr_handle *trans_handle);

For example, the following call rolls back a transaction:

isc_rollback_transaction(status_vector, &trans);

where status_vector is a pointer to a previously declared error status vector, and trans is
a pointer to a previously declared and initialized transaction handle.

76 INTERBASE 5

API GUIDE 77

CHAPTER

6
Chapter 6Working with Dynamic SQL

This chapter describes how to use API dynamic SQL (DSQL) functions to handle
dynamically created SQL statements for data definition and manipulation. Using
low-level API calls enables client applications to build SQL statements or solicit them
from end users at runtime, providing end users with a familiar database interface. It also
provides applications developers low-level access to InterBase features, such as multiple
databases, not normally available at a higher level with embedded DSQL statements. For
example, the InterBase isql utility is a DSQL application built on low-level API calls.

All API DSQL function names begin with “isc_dsql” to make it easier to distinguish them
from other API calls.

Overview of the DSQL programming process
Building and executing DSQL applications with the API involve the following general
steps:

g Embedding DSQL API functions in an application.

g Using host-language facilities, such as datatypes and macros, to provide input and output
areas for passing statements and parameters at runtime.

g Programming methods that use these statements and facilities to process SQL statements
at runtime.

CHAPTER 6 WORKING WITH DYNAMIC SQL

78 INTERBASE 5

These steps are described in detail throughout this chapter.

DSQL API limitations
Although DSQL offers many advantages, it also has the following limitations:

g Dynamic transaction processing is not permitted; all named transactions must be
declared at compile time.

g Dynamic access to Blob and array data is not supported; Blob and array data can be
accessed, but only through standard, statically processed SQL statements, or through
low-level API calls.

g Database creation is restricted to CREATE DATABASE statements executed within the context
of EXECUTE IMMEDIATE.

For more information about database access in DSQL, see “Accessing databases” on
page 78. For more information about handling transactions in DSQL applications, see
“Handling transactions” on page 79. For more information about working with Blob
data in DSQL, see “Processing Blob data” on page 81. For more information about
handling array data in DSQL, see “Processing array data” on page 81. For more
information about dynamic creation of databases, see “Creating a database” on
page 80.

Accessing databases
The InterBase API permits applications to attach to multiple databases simultaneously
using database handles. Database handles must be declared and initialized when an
application is compiled. Separate database handles should be supplied and initialized for
each database accessed simultaneously. For example, the following code creates a single
handle, db1, and initializes it to zero:

#include <ibase.h>

isc_db_handle db1;

. . .

db1 = 0L;

Once declared and initialized, a database handle can be assigned dynamically to a
database at runtime as follows:

#include <ibase.h>

. . .

char dbname[129];

DSQL API LIMITATIONS

API GUIDE 79

ISC_STATUS status_vector[20];

. . .

prompt_user("Name of database to open: ");

gets(dbname);

isc_attach_database(status_vector, 0, dbname, &db1, NULL, NULL);

A database handle can be used to attach to different databases as long as a previously
attached database is first detached with isc_detach_database(), which automatically sets
database handles to NULL. The following statements detach from a database, set the
database handle to zero, and attach to a new database:

isc_detach_database(status_vector, &db1);

isc_attach_database(status_vector, 0, "employee.gdb", &db1, NULL,

NULL);

For more information about API function calls for databases, see Chapter 4, “Working
with Databases.”

Handling transactions
InterBase requires that all transaction handles be declared when an application is
compiled. Once fixed at compile time, transaction handles cannot be changed at runtime,
nor can new handles be declared dynamically at runtime. Most API functions that process
SQL statements at runtime, such as isc_dsql_describe(), isc_dsql_describe_bind(),
isc_dsql_execute(), isc_dsql_execute2(), isc_dsql_execute_immediate(), isc_dsql_exec_immed2(), and
isc_dsql_prepare(), support the inclusion of a transaction handle parameter. The SQL
statements processed by these functions cannot pass transaction handles even if the SQL
syntax for the statement permits the use of a TRANSACTION clause.

Before a transaction handle can be used, it must be declared and initialized to zero. The
following code declares, initializes, and uses a transaction handle in an API call that
allocates and prepares an SQL statement for execution:

#include <ibase.h>

. . .

isc_tr_handle trans; /* Declare a transaction handle. */

isc_stmt_handle stmt; /* Declare a statement handle. */

char *sql_stmt = "SELECT * FROM EMPLOYEE";

isc_db_handle db1;

ISC_STATUS status_vector[20];

. . .

trans = 0L; /* Initialize the transaction handle to zero. */

stmt = NULL; /* Set handle to NULL before allocation. */

CHAPTER 6 WORKING WITH DYNAMIC SQL

80 INTERBASE 5

/* This code assumes both that a database attachment is made, */

/* and a transaction is started here. */

. . .

/* Allocate the SQL statement handle. */

isc_dsql_allocate_statement(status_vector, &db1, &stmt);

/* Prepare the statement for execution. */

isc_dsql_prepare(status_vector, &trans, &stmt, 0, sql_stmt, 1, NULL);

Note The SQL SET TRANSACTION statement cannot be prepared with isc_dsql_prepare(), but
it can be processed with isc_dsql_execute_immediate() if:

1. Previous transactions are first committed or rolled back.

2. The transaction handle is set to NULL.

For more information about using SQL statements, see the Programmer’s Guide. For
more information about SQL statement syntax, see the Language Reference.

Creating a database
To create a new database in an API application:

1. Detach from any currently attached databases with isc_detach_database().
Detaching from a database automatically sets its database handle to NULL.

2. Build the CREATE DATABASE statement to process.

3. Execute the statement with isc_dsql_execute_immediate() or
isc_dsql_exec_immed2().

For example, the following statements disconnect from any currently attached databases,
and create a new database. Any existing database handles are set to NULL, so that they
can be used to connect to the new database in future DSQL statements.

char *str = "CREATE DATABASE \"new_emp.gdb\"";

. . .

isc_detach_database(status_vector, &db1);

isc_dsql_execute_immediate(status_vector, &db1, &trans, 0, str, 1,

NULL);

WRITING AN API APPLICATION TO PROCESS SQL STATEMENTS

API GUIDE 81

Processing Blob data
Blob processing is not directly supported using DSQL, nor are Blob cursors supported.
Applications that process SQL statements can use API calls to handle Blob processing. For
more information about processing Blob data, see Chapter 7, “Working with Blob
Data.”

Processing array data
Array processing is not directly supported using DSQL. DSQL applications can use API
calls to process array data. For more information about array calls, see Chapter 8,
“Working with Array Data.”

Writing an API application to process SQL statements
Writing an API application that processes SQL statements enables a developer to code
directly to InterBase at a low level, while presenting end users a familiar SQL interface.
API SQL applications are especially useful when any of the following are not known until
runtime:

g The text of the SQL statement

g The number of host variables

g The datatypes of host variables

g References to database objects

Writing an API DSQL application is more complex than programming embedded SQL
applications with regular SQL because for most DSQL operations, the application needs
explicitly to allocate and process an extended SQL descriptor area (XSQLDA) data structure
to pass data to and from the database.

To use the API to process a DSQL statement, follow these basic steps:

1. Determine if API calls can process the SQL statement.

2. Represent the SQL statement as a character string in the application.

3. If necessary, allocate one or more XSQLDAs for input parameters and return
values.

4. Use appropriate API programming methods to process the SQL statement.

CHAPTER 6 WORKING WITH DYNAMIC SQL

82 INTERBASE 5

Determining if API calls can process an SQL statement
Except as noted earlier in this chapter, DSQL functions can process most SQL statements.
For example, DSQL can process data manipulation statements such as DELETE and INSERT,
data definition statements such as ALTER TABLE and CREATE INDEX, and SELECT statements.

The following table lists SQL statements that cannot be processed by DSQL functions:

These statements are used to process DSQL requests or to handle SQL cursors, which
must always be specified when an application is written. Attempting to use them with
DSQL results in run-time errors.

Representing an SQL statement as a character string
Within a DSQL application, an SQL statement can come from different sources. It might
come directly from a user who enters a statement at a prompt, as does isql. Or it might be
generated by the application in response to user interaction. Whatever the source of the
SQL statement, it must be represented as an SQL statement string, a character string that
is passed to DSQL for processing.

SQL statement strings do not begin with the EXEC SQL prefix or end with a semicolon (;)
as they do in typical embedded applications. For example, the following host-language
variable declaration is a valid SQL statement string:

char *str = "DELETE FROM CUSTOMER WHERE CUST_NO = 256";

Note The semicolon that appears at the end of this char declaration is a C terminator,
and not part of the SQL statement string.

Statement Statement

CLOSE DECLARE CURSOR

DESCRIBE EXECUTE

EXECUTE IMMEDIATE FETCH

OPEN PREPARE

TABLE 6.1 SQL statements that cannot be processed by the API

UNDERSTANDING THE XSQLDA

API GUIDE 83

Specifying parameters in SQL statement strings
SQL statement strings often include value parameters, expressions that evaluate to a
single numeric or character value. Parameters can be used anywhere in statement strings
where SQL expects a value that is not the name of a database object.

A value parameter in a statement string can be passed as a constant, or passed as a
placeholder at runtime. For example, the following statement string passes 256 as a
constant:

char *str = "DELETE FROM CUSTOMER WHERE CUST_NO = 256";

It is also possible to build strings at runtime from a combination of constants. This
method is useful for statements where the variable is not a true constant, or it is a table
or column name, and where the statement is executed only once in the application.

To pass a parameter as a placeholder, the value is passed as a question mark (?)
embedded within the statement string:

char *str = "DELETE FROM CUSTOMER WHERE CUST_NO = ?";

When a DSQL function processes a statement containing a placeholder, it replaces the
question mark with a value supplied in an extended SQL descriptor area (XSQLDA)
previously declared and populated in the application. Use placeholders in statements that
are prepared once, but executed many times with different parameter values.

Replaceable value parameters are often used to supply values in SQL SELECT statement
WHERE clause comparisons and in the UPDATE statement SET clause.

Understanding the XSQLDA
All DSQL applications must declare one or more extended SQL descriptor areas
(XSQLDAs). The XSQLDA structure definition can be found in the ibase.h header file in the
InterBase include directory. Applications declare instances of the XSQLDA for use.

The XSQLDA is a host-language data structure that DSQL uses to transport data to or from
a database when processing an SQL statement string. There are two types of XSQLDAs:
input descriptors and output descriptors. Both input and output descriptors are
implemented using the XSQLDA structure.

One field in the XSQLDA, sqlvar, is an XSQLVAR structure. The sqlvar is especially
important, because one XSQLVAR must be defined for each input parameter or column
returned. Like the XSQLDA, the XSQLVAR is a structure defined in ibase.h in the InterBase
include directory.

CHAPTER 6 WORKING WITH DYNAMIC SQL

84 INTERBASE 5

Applications do not declare instances of the XSQLVAR ahead of time, but must, instead,
dynamically allocate storage for the proper number of XSQLVAR structures required for
each DSQL statement before it is executed, then deallocate it, as appropriate, after
statement execution.

The following figure illustrates the relationship between the XSQLDA and the XSQLVAR:

Single instance of XSQLDA

short version

char sqldaid[8]

ISC_LONG sqldabc

short sqln

short sqld

XSQLVAR sqlvar[1]

Array of n instances of XSQLVAR

1st instance nth instance

short sqltype short sqltype

short sqlscale short sqlscale

short sqlsubtype short sqlsubtype

short sqllen short sqllen

char *sqldata char *sqldata

short *sqlind short *sqlind

short sqlname_length short sqlname_length

char sqlname[32] char sqlname[32]

short relname_length short relname_length

char relname[32] char relname[32]

short ownname_length short ownname_length

char ownname[32] char ownname[32]

short aliasname_length short aliasname_length

char aliasname[32] char aliasname[32]

UNDERSTANDING THE XSQLDA

API GUIDE 85

An input XSQLDA consists of a single XSQLDA structure and one XSQLVAR structure for each
input parameter. An output XSQLDA also consists of one XSQLDA structure and one
XSQLVAR structure for each data item returned by the statement. An XSQLDA and its
associated XSQLVAR structures are allocated as a single block of contiguous memory.

The isc_dsql_prepare(), isc_dsql_describe(), and isc_dsql_describe_bind() functions can be used to
determine the proper number of XSQLVAR structures to allocate, and the XSQLDA_LENGTH
macro can be used to allocate the proper amount of space. For more information about
the XSQLDA_LENGTH macro, see “Using the XSQLDA_LENGTH macro” on page 88.

XSQLDA field descriptions
The following table describes the fields that comprise the XSQLDA structure:

Field definition Description

short version Indicates the version of the XSQLDA structure. Set by an application. The current
version is defined in ibase.h as SQLDA_VERSION1

char sqldaid[8] Reserved for future use

ISC_LONG sqldabc Reserved for future use

short sqln Indicates the number of elements in the sqlvar array; the application should set this
field whenever it allocates storage for a descriptor

short sqld Indicates the number of parameters for an input XSQLDA, or the number of select-list
items for an output XSQLDA; set by InterBase during an isc_dsql_describe(),
isc_dsql_describe_bind(), or isc_dsql_prepare()

For an input descriptor, an sqld of 0 indicates that the SQL statement has no
parameters; for an output descriptor, an sqld of 0 indicates that the SQL statement
is not a SELECT statement

XSQLVAR sqlvar The array of XSQLVAR structures; the number of elements in the array is specified in
the sqln field

TABLE 6.2 XSQLDA field descriptions

CHAPTER 6 WORKING WITH DYNAMIC SQL

86 INTERBASE 5

The following table describes the fields that comprise the XSQLVAR structure:

Field definition Description

short sqltype Indicates the SQL datatype of parameters or select-list items; set by
InterBase during isc_dsql_describe(), isc_dsql_describe_bind(), or
isc_dsql_prepare()

short sqlscale Provides scale, specified as a negative number, for exact numeric
datatypes (DECIMAL, NUMERIC); set by InterBase during
isc_dsql_describe(), isc_dsql_describe_bind(), or isc_dsql_prepare()

short sqlsubtype Specifies the subtype for Blob data; set by InterBase during
isc_dsql_describe(), isc_dsql_describe_bind(), or isc_dsql_prepare()

short sqllen Indicates the maximum size, in bytes, of data in the sqldata field; set by
InterBase during isc_dsql_describe(), isc_dsql_describe_bind(), or
isc_dsql_prepare()

char *sqldata For input descriptors, specifies either the address of a select-list item or a
parameter; set by the application

For output descriptors, contains a value for a select-list item; set by
InterBase

short *sqlind On input, specifies the address of an indicator variable; set by an
application; on output, specifies the address of column indicator value for
a select-list item following a FETCH

A value of 0 indicates that the column is not NULL; a value of –1 indicates
the column is NULL; set by InterBase

short sqlname_length Specifies the length, in bytes, of the data in field, sqlname; set by
InterBase during isc_dsql_prepare() or isc_dsql_describe()

char sqlname[32] Contains the name of the column. Not NULL (\0) terminated; set by
InterBase during isc_dsql_prepare() or isc_dsql_describe()

short relname_length Specifies the length, in bytes, of the data in field, relname; set by InterBase
during isc_dsql_prepare() or isc_dsql_describe()

TABLE 6.3 XSQLVAR field descriptions

UNDERSTANDING THE XSQLDA

API GUIDE 87

Input descriptors
Input descriptors are used to process SQL statement strings that contain parameters.
Before an application can execute a statement with parameters, it must supply values for
them. The application indicates the number of parameters passed in the XSQLDA sqld
field, then describes each parameter in a separate XSQLVAR structure. For example, the
following statement string contains two parameters, so an application must set sqld to 2,
and describe each parameter:

char *str = "UPDATE DEPARTMENT SET BUDGET = ? WHERE LOCATION = ?";

When the statement is executed, the first XSQLVAR supplies information about the BUDGET
value, and the second XSQLVAR supplies the LOCATION value.

For more information about using input descriptors, see “DSQL programming
methods” on page 94.

Output descriptors
Output descriptors return values from an executed query to an application. The sqld field
of the XSQLDA indicates how many values were returned. Each value is stored in a
separate XSQLVAR structure. The XSQLDA sqlvar field points to the first of these XSQLVAR
structures. The following statement string requires an output descriptor:

char relname[32] Contains the name of the table; not NULL (\0) terminated, set by
InterBase during isc_dsql_prepare() or isc_dsql_describe()

short ownname_length Specifies the length, in bytes, of the data in field, ownname; set by
InterBase during isc_dsql_prepare() or isc_dsql_describe()

char ownname[32] Contains the name of the table owner; not NULL (\0) terminated, set by
InterBase during isc_dsql_prepare() or isc_dsql_describe()

short aliasname_length Specifies the length, in bytes, of the data in field, aliasname; set by
InterBase during isc_dsql_prepare() or isc_dsql_describe()

char aliasname[32] Contains the alias name of the column. If no alias exists, contains the
column name; not NULL (\0) terminated, set by
InterBase during isc_dsql_prepare() or isc_dsql_describe()

Field definition Description

TABLE 6.3 XSQLVAR field descriptions (continued)

CHAPTER 6 WORKING WITH DYNAMIC SQL

88 INTERBASE 5

char *str = "SELECT * FROM CUSTOMER WHERE CUST_NO > 100";

For information about retrieving information from an output descriptor, see “DSQL
programming methods” on page 94.

Using the XSQLDA_LENGTH macro
The ibase.h header file defines a macro, XSQLDA_LENGTH, to calculate the number of bytes
that must be allocated for an input or output XSQLDA. XSQLDA_LENGTH is defined as
follows:

#define XSQLDA_LENGTH (n) (sizeof (XSQLDA) + (n – 1) * sizeof(XSQLVAR))

n is the number of parameters in a statement string, or the number of select-list items
returned from a query. For example, the following C statement uses the XSQLDA_LENGTH
macro to specify how much memory to allocate for an XSQLDA with 5 parameters or
return items:

XSQLDA *my_xsqlda;

. . .

my_xsqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(5));

. . .

For more information about using the XSQLDA_LENGTH macro, see “DSQL programming
methods” on page 94.

UNDERSTANDING THE XSQLDA

API GUIDE 89

SQL datatype macro constants
InterBase defines a set of macro constants to represent SQL datatypes and NULL status
information in an XSQLVAR. An application should use these macro constants to specify
the datatype of parameters and to determine the datatypes of select-list items in an SQL
statement. The following table lists each SQL datatype, its corresponding macro constant
expression, C datatype or InterBase typedef, and whether or not the sqlind field is used
to indicate a parameter or variable that contains NULL or unknown data:

SQL
datatype Macro expression C datatype or typedef

sqlind
used?

Array SQL_ARRAY ISC_QUAD No

Array SQL_ARRAY + 1 ISC_QUAD Yes

Blob SQL_BLOB ISC_QUAD No

BLOB SQL_BLOB + 1 ISC_QUAD Yes

CHAR SQL_TEXT char[] No

CHAR SQL_TEXT + 1 char[] Yes

DATE SQL_DATE ISC_QUAD No

DATE SQL_DATE + 1 ISC_QUAD Yes

DECIMAL SQL_SHORT, SQL_LONG, or SQL_DOUBLE int, long, or double No

DECIMAL SQL_SHORT + 1, SQL_LONG + 1, or SQL_DOUBLE + 1 int, long, or double Yes

DOUBLE
PRECISON

SQL_DOUBLE double No

DOUBLE
PRECISION

SQL_DOUBLE + 1 double Yes

INTEGER SQL_LONG long No

INTEGER SQL_LONG + 1 ISC_LONG Yes

FLOAT SQL_FLOAT float No

FLOAT SQL_FLOAT + 1 float Yes

TABLE 6.4 SQL datatypes, macro expressions, and C datatypes

CHAPTER 6 WORKING WITH DYNAMIC SQL

90 INTERBASE 5

Note DECIMAL and NUMERIC datatypes are stored internally as SMALLINT, INTEGER, or
DOUBLE PRECISION datatypes. To specify the correct macro expression to provide for a
DECIMAL or NUMERIC column, use isql to examine the column definition in the table to see
how InterBase is storing column data, then choose a corresponding macro expression.

The datatype information for a parameter or select-list item is contained in the sqltype
field of the XSQLVAR structure. The value contained in sqltype provides two pieces of
information:

g The datatype of the parameter or select-list item.

g Whether sqlind is used to indicate NULL values. If sqlind is used, its value specifies
whether the parameter or select-list item is NULL (–1), or not NULL (0).

For example, if sqltype equals SQL_TEXT, the parameter or select-list item is a CHAR that
does not use sqlind to check for a NULL value (because, in theory, NULL values are not
allowed for it). If sqltype equals SQL_TEXT + 1, then sqlind can be checked to see if the
parameter or select-list item is NULL.

TIP The C language expression, sqltype & 1, provides a useful test of whether a parameter or
select-list item can contain a NULL. The expression evaluates to 0 if the parameter or
select-list item cannot contain a NULL, and 1 if the parameter or select-list item can
contain a NULL. The following code fragment demonstrates how to use the expression:

if (sqltype & 1 == 0)

{

 /* parameter or select-list item that CANNOT contain a NULL */

NUMERIC SQL_SHORT, SQL_LONG, or SQL_DOUBLE int, long, or double No

NUMERIC SQL_SHORT + 1, SQL_LONG + 1, or SQL_DOUBLE + 1 int, long, or double Yes

SMALLINT SQL_SHORT short No

SMALLINT SQL_SHORT + 1 short Yes

VARCHAR SQL_VARYING First 2 bytes: short containing the
length of the character string;
remaining bytes: char[]

No

VARCHAR SQL_VARYING + 1 First 2 bytes: short containing the
length of the character string;
remaining bytes: char[]

Yes

SQL
datatype Macro expression C datatype or typedef

sqlind
used?

TABLE 6.4 SQL datatypes, macro expressions, and C datatypes (continued)

UNDERSTANDING THE XSQLDA

API GUIDE 91

}

else

{

 /* parameter or select-list item CAN contain a NULL */

}

By default, both isc_dsql_prepare() and isc_dsql_describe() return a macro expression of type
+ 1, so sqlind should always be examined for NULL values with these statements.

Handling varying string datatypes
VARCHAR, CHARACTER VARYING, and NCHAR VARYING datatypes require careful handling in
DSQL. The first two bytes of these datatypes contain string length information, while the
remainder of the data contains the actual bytes of string data to process.

To avoid having to write code to extract and process variable-length strings in an
application, it is possible to force these datatypes to fixed length using SQL macro
expressions. For more information about forcing variable-length data to fixed length for
processing, see “Coercing datatypes” on page 92.

Applications can, instead, detect and process variable-length data directly. To do so, they
must extract the first two bytes from the string to determine the byte-length of the string
itself, then read the string, byte-by-byte, into a null-terminated buffer.

Handling NUMERIC and DECIMAL datatypes
DECIMAL and NUMERIC datatypes are stored internally as SMALLINT, INTEGER, or DOUBLE
PRECISION datatypes, depending on the precision and scale defined for a column
definition that uses these types. To determine how a DECIMAL or NUMERIC value is actually
stored in the database, use isql to examine the column definition in the table. If NUMERIC
is reported, then data is actually being stored as DOUBLE PRECISION.

When a DECIMAL or NUMERIC value is stored as a SMALLINT or INTEGER, the value is stored
as a whole number. During retrieval in DSQL, the sqlscale field of the XSQLVAR is set to a
negative number that indicates the factor of 10 by which the whole number (returned in
sqldata), must be divided in order to produce the correct NUMERIC or DECIMAL value with
its fractional part. If sqlcale is –1, then the number must be divided by 10, if it is –2, then
the number must be divided by 100,
–3 by 1000, and so forth.

CHAPTER 6 WORKING WITH DYNAMIC SQL

92 INTERBASE 5

Coercing datatypes
Sometimes when processing DSQL input parameters and select-list items, it is desirable
or necessary to translate one datatype to another. This process is referred to as datatype
coercion. For example, datatype coercion is often used when parameters or select-list
items are of type VARCHAR. The first two bytes of VARCHAR data contain string length
information, while the remainder of the data is the string to process. By coercing the data
from SQL_VARYING to SQL_TEXT, data processing can be simplified.

Coercion can only be from one compatible datatype to another. For example,
SQL_VARYING to SQL_TEXT, or SQL_SHORT to SQL_LONG.

4 Coercing character datatypes
To coerce SQL_VARYING datatypes to SQL_TEXT datatypes, change the sqltype field in the
parameter’s or select-list item’s XSQLVAR structure to the desired SQL macro datatype
constant. For example, the following statement assumes that var is a pointer to an
XSQLVAR structure, and that it contains an SQL_VARYING datatype to convert to SQL_TEXT:

var->sqltype = SQL_TEXT;

After coercing a character datatype, provide proper storage space for it. The XSQLVAR field,
sqllen, contains information about the size of the uncoerced data.
Set the XSQLVAR sqldata field to the address of the data.

4 Coercing numeric datatypes
To coerce one numeric datatype to another, change the sqltype field in the parameter’s or
select-list item’s XSQLVAR structure to the desired SQL macro datatype constant. For
example, the following statement assumes that var is a pointer to an XSQLVAR structure,
and that it contains an SQL_SHORT datatype to convert to SQL_LONG:

var->sqltype = SQL_LONG;

IMPORTANT Do not coerce a larger datatype to a smaller one. Data can be lost in such a translation.

4 Setting a NULL indicator
If a parameter or select-list item contains a NULL value, the sqlind field should be used to
indicate its NULL status. Appropriate storage space must be allocated for sqlind before
values can be stored there.

Before insertion, set sqlind to –1 to indicate that NULL values are legal. Otherwise, set
sqlind to 0.

UNDERSTANDING THE XSQLDA

API GUIDE 93

After selection, an sqlind of –1 indicates a field contains a NULL value. Other values
indicate a field contains non-NULL data.

Aligning numerical data
Ordinarily, when a variable with a numeric datatype is created, the compiler will ensure
that the variable is stored at a properly aligned address, but when numeric data is stored
in a dynamically allocated buffer space, such as can be pointed to by the XSQLDA and
XSQLVAR structures, the programmer must take precautions to ensure that the storage
space is properly aligned.

Certain platforms, in particular those with RISC processors, require that numerical data
in dynamically allocated storage structures be aligned properly in memory. Alignment is
dependent both on datatype and platform.

For example, a short integer on a Sun SPARCstation must be located at an address
divisible by 2, while a long on the same platform must be located at an address divisible
by 4. In most cases, a data item is properly aligned if the address of its starting byte is
divisible by the correct alignment number. Consult specific system and compiler
documentation for alignment requirements.

A useful rule of thumb is that the size of a datatype is always a valid alignment number
for the datatype. For a given type T, if size of (T) equals n, then addresses divisible by n
are correctly aligned for T. The following macro expression can be used to align data:

#define ALIGN(ptr, n) ((ptr + n - 1) & ~(n - 1))

where ptr is a pointer to char.

The following code illustrates how the ALIGN macro might be used:

char *buffer_pointer, *next_aligned;

next_aligned = ALIGN(buffer_pointer, sizeof(T));

CHAPTER 6 WORKING WITH DYNAMIC SQL

94 INTERBASE 5

DSQL programming methods
There are four possible DSQL programming methods for handling an SQL statement
string. The best method for processing a string depends on the type of SQL statement in
the string, and whether or not it contains placeholders for parameters. The following
decision table explains how to determine the appropriate processing method for a given
string:

Method 1: Non-query statements without parameters
There are two ways to process an SQL statement string containing a non-query statement
without placeholder parameters:

g Use isc_dsql_execute_immediate() to prepare and execute the string a single time.

g Use isc_dsql_allocate_statement() to allocate a statement string for the statement to execute,
isc_dsql_prepare() to parse the statement for execution and assign it a name, then use
isc_dsql_execute() to carry out the statement’s actions as many times as required in an
application.

4 Using isc_dsql_execute_immediate()
1. To execute a statement string a single time, use isc_dsql_execute_immediate():

2. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates an
SQL statement string:

char *str = "UPDATE DEPARTMENT SET BUDGET = BUDGET * 1.05";

3. Parse and execute the statement string using isc_dsql_execute_immediate():

isc_dsql_execute_immediate(status_vector, &db1, &trans, 0, str, 1,

NULL);

Is it a query? Does it have placeholders? Processing method to use:

No No Method 1

No Yes Method 2

Yes No Method 3

Yes Yes Method 4

TABLE 6.5 SQL statement strings and recommended processing methods

DSQL PROGRAMMING METHODS

API GUIDE 95

Note isc_dsql_execute_immediate() also accepts string literals. For example,

isc_dsql_execute_immediate(status_vector, &db1, &trans, 0,

"UPDATE DEPARTMENT SET BUDGET = BUDGET * 1.05", 1, NULL);

For the complete syntax of isc_dsq_execute_immediate() and an explanation of its
parameters, see Chapter 12, “API Function Reference.”

4 Using isc_dsql_prepare() and isc_dsql_execute()
To execute a statement string several times, use isc_dsql_allocate_statement(),
isc_dsql_prepare(), and isc_dsql_execute():

1. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates an
SQL statement string:

char *str = "UPDATE DEPARTMENT SET BUDGET = BUDGET * 1.05";

2. Declare and initialize an SQL statement handle, then allocate it with
isc_dsql_allocate_statement():

isc_stmt_handle stmt; /* Declare a statement handle. */

stmt = NULL; /* Set handle to NULL before allocation. */

. . .

isc_dsql_allocate_statement(status_vector, &db1, &stmt);

3. Parse the statement string with isc_dsql_prepare(). This sets the statement
handle (stmt) to refer to the parsed format. The statement handle is used in
subsequent calls to isc_dsql_execute():

isc_dsql_prepare(status_vector, &trans, &stmt, 0, str, 1, NULL);

Note isc_dsql_prepare() also accepts string literals. For example,

isc_dsql_prepare(status_vector, &trans, &stmt, 0,

"UPDATE DEPARTMENT SET BUDGET = BUDGET * 1.05", 1, NULL);

4. Execute the named statement string using isc_dsql_execute(). For example, the
following statement executes a statement string named stmt:

isc_dsql_execute(status_vector, &trans, &stmt, 1, NULL);

Once a statement string is prepared, it can be executed as many times as required in
an application.

CHAPTER 6 WORKING WITH DYNAMIC SQL

96 INTERBASE 5

Method 2: Non-query statements with parameters
There are two steps to processing an SQL statement string containing a non-query
statement with placeholder parameters:

1. Create an input XSQLDA to process a statement string’s parameters.

2. Prepare and execute the statement string with its parameters.

4 Creating the input XSQLDA

Placeholder parameters are replaced with actual data before a prepared SQL statement
string is executed. Because those parameters are unknown when the statement string is
created, an input XSQLDA must be created to supply parameter values at execute time. To
prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XSQLDA needed to process parameters. For
example, the following declaration creates an XSQLDA called in_sqlda:

XSQLDA *in_sqlda;

2. Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:

XSQLVAR *var;

Declaring a pointer to the XSQLVAR structure is not necessary, but can simplify
referencing the structure in subsequent statements.

3. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
following statement allocates storage for in_sqlda:

in_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(10));

In this statement space for 10 XSQLVAR structures is allocated, allowing the XSQLDA to
accommodate up to 10 parameters.

4. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the sqln field
to indicate the number of XSQLVAR structures allocated:

in_sqlda->version = SQLDA_VERSION1;

in_sqlda->sqln = 10;

4 Preparing and executing a statement string with parameters
After an XSQLDA is created for holding a statement string’s parameters, the statement
string can be created and prepared. Local variables corresponding to the placeholder
parameters in the string must be assigned to their corresponding sqldata fields in the
XSQLVAR structures.

DSQL PROGRAMMING METHODS

API GUIDE 97

To prepare and execute a non-query statement string with parameters, follow these steps:

1. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates an
SQL statement string with placeholder parameters:

char *str = "UPDATE DEPARTMENT SET BUDGET = ?, LOCATION = ?";

This statement string contains two parameters: a value to be assigned to the BUDGET
column and a value to be assigned to the LOCATION column.

2. Declare and initialize an SQL statement handle, then allocate it with
isc_dsql_allocate():

isc_stmt_handle stmt; /* Declare a statement handle. */

stmt = NULL; /* Set handle to NULL before allocation. */

. . .

isc_dsql_allocate_statement(status_vector, &db1, &stmt);

3. Parse the statement string with isc_dsql_prepare(). This sets the statement
handle (stmt) to refer to the parsed format. The statement handle is used in
subsequent calls to isc_dsql_describe_bind() and isc_dsql_execute():

isc_dsql_prepare(status_vector, &trans, &stmt, 0, str, 1,

in_sqlda);

4. Use isc_dsql_describe_bind() to fill the input XSQLDA with information about the
parameters contained in the SQL statement:

isc_dsql_describe_bind(status_vector, &stmt, 1, in_sqlda);

5. Compare the value of the sqln field of the XSQLDA to the value of the sqld field
to make sure enough XSQLVARs are allocated to hold information about each
parameter. sqln should be at least as large as sqld. If not, free the storage
previously allocated to the input descriptor, reallocate storage to reflect the
number of parameters specified by sqld, reset sqln and version, then execute
isc_dsql_describe_bind() again:

if (in_sqlda->sqld > in_sqlda->sqln)

{

n = in_sqlda->sqld;

free(in_sqlda);

in_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(n));

in_sqlda->sqln = n

in_sqlda->version = SQLDA_VERSION1;

isc_dsql_describe_bind(status_vector, &stmt, 1, in_sqlda);

}

CHAPTER 6 WORKING WITH DYNAMIC SQL

98 INTERBASE 5

6. Process each XSQLVAR parameter structure in the XSQLDA. Processing a
parameter structure involves up to four steps:

- Coerce a parameter’s datatype (optional).

- Allocate local storage for the data pointed to by the sqldata field of the XSQLVAR. This
step is only required if space for local variables is not allocated until runtime. The
following example illustrates dynamic allocation of local variable storage space.

- Provide a value for the parameter consistent with its datatype (required).

- Provide a NULL value indicator for the parameter.

The following code example illustrates these steps, looping through each XSQLVAR
structure in the in_sqlda XSQLDA:

for (i=0, var = in_sqlda->sqlvar; i < in_sqlda->sqld; i++, var++)

{

/* Process each XSQLVAR parameter structure here.

Var points to the parameter structure. */

dtype = (var->sqltype & ~1) /* drop NULL flag for now */

switch(dtype)

{

case SQL_VARYING: /* coerce to SQL_TEXT */

var->sqltype = SQL_TEXT;

/* allocate local variable storage */

var->sqldata = (char *)malloc(sizeof(char)*var->sqllen);

. . .

break;

case SQL_TEXT:

var->sqldata = (char *)malloc(sizeof(char)*var->sqllen);

/* provide a value for the parameter */

. . .

break;

case SQL_LONG:

var->sqldata = (char *)malloc(sizeof(long));

/* provide a value for the parameter */

*(long *)(var->sqldata) = 17;

break;

. . .

} /* end of switch statement */

if (sqltype & 1)

{

/* allocate variable to hold NULL status */

DSQL PROGRAMMING METHODS

API GUIDE 99

var->sqlind = (short *)malloc(sizeof(short));

}

} /* end of for loop */

For more information about datatype coercion and NULL indicators, see “Coercing
datatypes” on page 92.

7. Execute the named statement string with isc_dsql_execute(). For example, the
following statement executes a statement string named stmt:

isc_dsql_execute(status_vector, &trans, &stmt, 1, in_sqlda);

4 Re-executing the statement string
Once a non-query statement string with parameters is prepared, it can be executed as
often as required in an application. Before each subsequent execution, the input XSQLDA
can be supplied with new parameter and NULL indicator data.

To supply new parameter and NULL indicator data for a prepared statement, repeat step
6 of “Preparing and executing a statement string with parameters” on page 96.

Method 3: Query statements without parameters
There are three steps to processing an SQL query statement string without parameters:

1. Prepare an output XSQLDA to process the select-list items returned when the
query is executed.

2. Prepare the statement string.

3. Use a cursor to execute the statement and retrieve select-list items from the
output XSQLDA.

4 Preparing the output XSQLDA

Most queries return one or more rows of data, referred to as a select-list. Because the
number and kind of items returned are unknown when a statement string is created, an
output XSQLDA must be created to store select-list items that are returned at runtime. To
prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XSQLDA needed to store the column data for
each row that will be fetched. For example, the following declaration creates
an XSQLDA called out_sqlda:

XSQLDA *out_sqlda;

CHAPTER 6 WORKING WITH DYNAMIC SQL

100 INTERBASE 5

2. Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:

XSQLVAR *var;

Declaring a pointer to the XSQLVAR structure is not necessary, but can simplify
referencing the structure in subsequent statements.

3. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
following statement allocates storage for out_sqlda:

out_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(10));

Space for 10 XSQLVAR structures is allocated in this statement, enabling the XSQLDA to
accommodate up to 10 select-list items.

4. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the sqln field
of the XSQLDA to indicate the number of XSQLVAR structures allocated:

out_sqlda->version = SQLDA_VERSION1;

out_sqlda->sqln = 10;

4 Preparing a query statement string without parameters
After an XSQLDA is created for holding the items returned by a query statement string, the
statement string can be created, prepared, and described. When a statement string is
executed, InterBase creates the select-list of selected rows.

To prepare a query statement string, follow these steps:

1. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates an
SQL statement string that performs a query:

char *str = "SELECT * FROM CUSTOMER";

The statement appears to have only one select-list item (*). The asterisk is a wildcard
symbol that stands for all of the columns in the table, so the actual number of items
returned equals the number of columns in the table.

2. Declare and initialize an SQL statement handle, then allocate it with
isc_dsql_allocate():

isc_stmt_handle stmt; /* Declare a statement handle. */

stmt = NULL; /* Set handle to NULL before allocation. */

. . .

isc_dsql_allocate_statement(status_vector, &db1, &stmt);

DSQL PROGRAMMING METHODS

API GUIDE 101

3. Parse the statement string with isc_dsql_prepare(). This sets the statement
handle (stmt) to refer to the parsed format. The statement handle is used in
subsequent calls to statements such as isc_dsql_describe() and isc_dsql_execute():

isc_dsql_prepare(status_vector, &trans, &stmt, 0, str, 1, NULL);

4. Use isc_dsql_describe() to fill the output XSQLDA with information about the
select-list items returned by the statement:

isc_dsql_describe(status_vector, &trans, &stmt, out_sqlda);

5. Compare the sqln field of the XSQLDA to the sqld field to determine if the
output descriptor can accommodate the number of select-list items specified
in the statement. If not, free the storage previously allocated to the output
descriptor, reallocate storage to reflect the number of select-list items
specified by sqld, reset sqln and version, then execute isc_dsql_describe() again:

if (out_sqlda->sqld > out_sqlda->sqln)

{

n = out_sqlda->sqld;

free(out_sqlda);

out_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(n));

out_sqlda->sqln = n;

out_sqlda->version = SQLDA_VERSION1;

isc_dsql_describe(status_vector, &trans, 1, out_sqlda);

}

6. Set up an XSQLVAR structure for each item returned. Setting up an item
structure involves the following steps:

- Coercing an item’s datatype (optional).

- Allocating local storage for the data pointed to by the sqldata field of the XSQLVAR.
This step is only required if space for local variables is not allocated until runtime.
The following example illustrates dynamic allocation of local variable storage space.

- Providing a NULL value indicator for the parameter.

The following code example illustrates these steps, looping through each XSQLVAR
structure in the out_sqlda XSQLDA:

for (i=0, var = out_sqlda->sqlvar; i < out_sqlda->sqld; i++, var++)

{

dtype = (var->sqltype & ~1) /* drop flag bit for now */

switch(dtype)

{

case SQL_VARYING:

var->sqltype = SQL_TEXT;

CHAPTER 6 WORKING WITH DYNAMIC SQL

102 INTERBASE 5

var->sqldata = (char *)malloc(sizeof(char)*var->sqllen + 2);

break;

case SQL_TEXT:

var->sqldata = (char *)malloc(sizeof(char)*var->sqllen);

break;

case SQL_LONG:

var->sqldata = (char *)malloc(sizeof(long));

break;

. . .

/* process remaining types */

} /* end of switch statements */

if (sqltype & 1)

{

/* allocate variable to hold NULL status */

var->sqlind = (short *)malloc(sizeof(short));

}

} /* end of for loop */

For more information about datatype coercion and NULL indicators, see “Coercing
datatypes” on page 92.

4 Executing a statement string within the context of a cursor
To retrieve select-list items from a prepared statement string, the string can be executed
within the context of a cursor. All cursor declarations in InterBase are fixed statements
inserted into the application before it is compiled. DSQL application developers must
anticipate the need for cursors when writing the application and declare them ahead of
time.

A cursor is only needed to process positioned UPDATE and DELETE statements made
against the rows retrieved by isc_dsql_fetch() for SELECT statements that specify an optional
FOR UPDATE OF clause.

The following descriptions apply to the situations when a cursor is needed. For an
example of executing a statement and fetching rows without using a cursor, see
“isc_dsql_fetch()” on page 280.

A looping construct is used to fetch a single row at a time from the cursor and to process
each select-list item (column) in that row before the next row is fetched.

To execute a statement string within the context of a cursor and retrieve rows of select-list
items, follow these steps:

1. Execute the prepared statement with isc_dsql_execute():

isc_dsql_execute(status_vector, &trans, &stmt, 1, NULL);

DSQL PROGRAMMING METHODS

API GUIDE 103

2. Declare and open a cursor for the statement string with
isc_dsql_set_cursor_name(). For example, the following statement declares a
cursor, dyn_cursor, for the SQL statement string, stmt:

isc_dsql_set_cursor_name(status_vector, &stmt, "dyn_cursor",

NULL);

Opening the cursor causes the statement string to be executed, and an active set of
rows to be retrieved.

3. Fetch one row at a time and process the select-list items (columns) it contains
with isc_dsql_fetch(). For example, the following loops retrieve one row at a
time from dyn_cursor and process each item in the retrieved row with an
application-specific function called process_column():

while ((fetch_stat =

isc_dsql_fetch(status_vector, &stmt, 1, out_sqlda))

== 0)

{

for (i = 0; i < out_sqlda->sqld; i++)

{

process_column(sqlda->sqlvar[i]);

}

}

if (fetch_stat != 100L)

{

/* isc_dsql_fetch returns 100 if no more rows remain to be

retrieved */

SQLCODE = isc_sqlcode(status_vector);

isc_print_sqlerror(SQLCODE, status_vector);

return(1);

}

The process_column() function mentioned in this example processes each returned
select-list item. The following skeleton code illustrates how such a function can be set
up:

void process_column(XSQLVAR *var)

{

/* test for NULL value */

if ((var->sqltype & 1) && (*(var->sqlind) = -1))

{

/* process the NULL value here */

}

else

{

CHAPTER 6 WORKING WITH DYNAMIC SQL

104 INTERBASE 5

/* process the data instead */

}

. . .

}

4. When all the rows are fetched, close the cursor with isc_dsql_free_statement():

isc_dsql_free_statement(status_vector, &stmt, DSQL_close);

4 Re-executing a query statement string without parameters
Once a query statement string without parameters is prepared, it can be executed as often
as required in an application by closing and reopening its cursor.

To reopen a cursor and process select-list items, repeat steps 2 through 4 of “Executing
a statement string within the context of a cursor” on page 102.

Method 4: Query statements with parameters
There are four steps to processing an SQL query statement string with placeholder
parameters:

1. Prepare an input XSQLDA to process a statement string’s parameters.

2. Prepare an output XSQLDA to process the select-list items returned when the
query is executed.

3. Prepare the statement string and its parameters.

4. Use a cursor to execute the statement using input parameter values from an
input XSQLDA, and to retrieve select-list items from the output XSQLDA.

4 Preparing the input XSQLDA

Placeholder parameters are replaced with actual data before a prepared SQL statement
string is executed. Because those parameters are unknown when the statement string is
created, an input XSQLDA must be created to supply parameter values at runtime. To
prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XSQLDA needed to process parameters. For
example, the following declaration creates an XSQLDA called in_sqlda:

XSQLDA *in_sqlda;

2. Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:

XSQLVAR *var;

DSQL PROGRAMMING METHODS

API GUIDE 105

Declaring a pointer to the XSQLVAR structure is not necessary, but can simplify
referencing the structure in subsequent statements.

3. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
following statement allocates storage for in_slqda:

in_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(10));

In this statement, space for 10 XSQLVAR structures is allocated, allowing the XSQLDA to
accommodate up to 10 input parameters. Once structures are allocated, assign values
to the sqldata fields.

4. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the sqln field
of the XSQLDA to indicate the number of XSQLVAR structures allocated:

in_sqlda->version = SQLDA_VERSION1;

in_sqlda->sqln = 10;

4 Preparing the output XSQLDA

Most queries return one or more rows of data, referred to as a select-list. Because the
number and kind of items returned are unknown when a statement string is executed, an
output XSQLDA must be created to store select-list items that are returned at runtime. To
prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XSQLDA needed to process parameters. For
example, the following declaration creates an XSQLDA called out_sqlda:

XSQLDA *out_sqlda;

2. Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:

XSQLVAR *var;

Declaring a pointer to the XSQLVAR structure is not necessary, but can simplify
referencing the structure in subsequent statements.

3. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
following statement allocates storage for out_sqlda:

out_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(10));

Space for 10 XSQLVAR structures is allocated in this statement, enabling the XSQLDA to
accommodate up to 10 select-list items.

4. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the sqln field
of the XSQLDA to indicate the number of XSQLVAR structures allocated:

out_sqlda->version = SQLDA_VERSION1;

out_sqlda->sqln = 10;

CHAPTER 6 WORKING WITH DYNAMIC SQL

106 INTERBASE 5

4 Preparing a query statement string with parameters
After an input and an output XSQLDA are created for holding a statement string’s
parameters, and the select-list items returned when the statement is executed, the
statement string can be created and prepared. When a statement string is prepared,
InterBase replaces the placeholder parameters in the string with information about the
actual parameters used. The information about the parameters must be assigned to the
input XSQLDA (and perhaps adjusted) before the statement can be executed. When the
statement string is executed, InterBase stores select-list items in the output XSQLDA.

To prepare a query statement string with parameters, follow these steps:

1. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates an
SQL statement string with placeholder parameters:

char *str = "SELECT * FROM DEPARTMENT WHERE BUDGET = ?, LOCATION =

?";

This statement string contains two parameters: a value to be assigned to the BUDGET
column and a value to be assigned to the LOCATION column.

2. Declare and initialize an SQL statement handle, then allocate it with
isc_dsql_allocate():

isc_stmt_handle stmt; /* Declare a statement handle. */

stmt = NULL; /* Set handle to NULL before allocation. */

. . .

isc_dsql_allocate_statement(status_vector, &db1, &stmt);

3. Prepare the statement string with isc_dsql_prepare(). This sets the statement
handle (stmt) to refer to the parsed format. The statement handle is used in
subsequent calls to isc_dsql_describe(), isc_dsql_describe_bind(), and
isc_dsql_execute2():

isc_dsql_prepare(status_vector, &trans, &stmt, 0, str, 1,

out_xsqlda);

4. Use isc_dsql_describe_bind() to fill the input XSQLDA with information about the
parameters contained in the SQL statement:

isc_dsql_decribe_bind(status_vector, &stmt, 1, in_xsqlda);

5. Compare the sqln field of the XSQLDA to the sqld field to determine if the
input descriptor can accommodate the number of parameters contained in
the statement. If not, free the storage previously allocated to the input
descriptor, reallocate storage to reflect the number of parameters specified by
sqld, reset sqln and version, then execute isc_dsql_describe_bind() again:

DSQL PROGRAMMING METHODS

API GUIDE 107

if (in_sqlda->sqld > in_sqlda->sqln)

{

n = in_sqlda->sqld;

free(in_sqlda);

in_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(n));

in_sqlda->sqln = n;

in_sqlda->version = SQLDA_VERSION1;

isc_dsql_decribe_bind(status_vector, &stmt, 1, in_xsqlda);

}

6. Process each XSQLVAR parameter structure in the input XSQLDA. Processing a
parameter structure involves up to four steps:

- Coercing a parameter’s datatype (optional).

- Allocating local storage for the data pointed to by the sqldata field of the XSQLVAR.
This step is only required if space for local variables is not allocated until runtime.
The following example illustrates dynamic allocation of local variable storage space.

- Providing a value for the parameter consistent with its datatype (required).

- Providing a NULL value indicator for the parameter.

These steps must be followed in the order presented. The following code example
illustrates these steps, looping through each XSQLVAR structure in the in_sqlda
XSQLDA:

for (i=0, var = in_sqlda->sqlvar; i < in_sqlda->sqld; i++, var++)

{

/* Process each XSQLVAR parameter structure here.

The parameter structure is pointed to by var.*/

dtype = (var->sqltype & ~1) /* drop flag bit for now */

switch(dtype)

{

case SQL_VARYING: /* coerce to SQL_TEXT */

var->sqltype = SQL_TEXT;

/* allocate proper storage */

var->sqldata = (char *)malloc(sizeof(char)*var->sqllen);

/* Provide a value for the parameter. See case SQL_LONG. */

. . .

break;

case SQL_TEXT:

var->sqldata = (char *)malloc(sizeof(char)*var->sqllen);

/* Provide a value for the parameter. See case SQL_LONG. */

. . .

break;

CHAPTER 6 WORKING WITH DYNAMIC SQL

108 INTERBASE 5

case SQL_LONG:

var->sqldata = (char *)malloc(sizeof(long));

/* Provide a value for the parameter. */

*(long *)(var->sqldata) = 17;

break;

. . .

} /* end of switch statement */

if (sqltype & 1)

{

/* allocate variable to hold NULL status */

var->sqlind = (short *)malloc(sizeof(short));

}

} /* end of for loop */

For more information about datatype coercion and NULL indicators, see “Coercing
datatypes” on page 92.

7. Use isc_dsql_describe() to fill the output XSQLDA with information about the
select-list items returned by the statement:

isc_dsql_describe(status_vector, &trans, &stmt, out_xsqlda);

8. Compare the sqln field of the XSQLDA to the sqld field to determine if the
output descriptor can accommodate the number of select-list items specified
in the statement. If not, free the storage previously allocated to the output
descriptor, reallocate storage to reflect the number of select-list items
specified by sqld, reset sqln and version, and execute DESCRIBE OUTPUT again:

if (out_sqlda->sqld > out_sqlda->sqln)

{

n = out_sqlda->sqld;

free(out_sqlda);

out_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(n));

out_sqlda->sqln = n;

out_sqlda->version = SQLDA_VERSION1;

isc_dsql_describe(status_vector, &trans, &stmt, out_xsqlda);

}

9. Set up an XSQLVAR structure for each item returned. Setting up an item
structure involves the following steps:

- Coercing an item’s datatype (optional).

- Allocating local storage for the data pointed to by the sqldata field of the XSQLVAR.
This step is only required if space for local variables is not allocated until runtime.
The following example illustrates dynamic allocation of local variable storage space.

DSQL PROGRAMMING METHODS

API GUIDE 109

- Providing a NULL value indicator for the parameter (optional).

The following code example illustrates these steps, looping through each XSQLVAR
structure in the out_sqlda XSQLDA:

for (i=0, var = out_sqlda->sqlvar; i < out_sqlda->sqld; i++, var++)

{

dtype = (var->sqltype & ~1) /* drop flag bit for now */

switch(dtype)

{

case SQL_VARYING:

var->sqltype = SQL_TEXT;

break;

case SQL_TEXT:

var->sqldata = (char *)malloc(sizeof(char)*var->sqllen);

break;

case SQL_LONG:

var->sqldata = (char *)malloc(sizeof(long));

break;

/* process remaining types */

} /* end of switch statements */

if (sqltype & 1)

{

/* allocate variable to hold NULL status */

var->sqlind = (short *)malloc(sizeof(short));

}

} /* end of for loop */

For more information about datatype coercion and NULL indicators, see “Coercing
datatypes” on page 92.

4 Executing a query statement string within the context of a cursor
To retrieve select-list items from a statement string, the string must be executed within
the context of a cursor. All cursor declarations in InterBase are fixed, embedded
statements inserted into the application before it is compiled. DSQL application
developers must anticipate the need for cursors when writing the application and declare
them ahead of time.

A looping construct is used to fetch a single row at a time from the cursor and to process
each select-list item (column) in that row before the next row is fetched.

To execute a statement string within the context of a cursor and retrieve rows of select-list
items, follow these steps:

CHAPTER 6 WORKING WITH DYNAMIC SQL

110 INTERBASE 5

1. Execute the statement with isc_dsql_execute2():

isc_dsql_execute2(status_vector, &trans, &stmt, 1, in_xsqlda,

out_xsqlda);

2. Declare and open a cursor for the statement string with
isc_dsql_set_cursor_name(). For example, the following statement declares a
cursor, dyn_cursor, for the prepared SQL statement string, stmt:

isc_dsql_set_cursor_name(status_vector, &stmt, "dyn_cursor",

NULL);

Opening the cursor causes the statement string to be executed, and an active set of
rows to be retrieved.

3. Fetch one row at a time with isc_dsql_fetch() and process the select-list items
(columns) it contains. For example, the following loops retrieve one row at
a time from dyn_cursor and process each item in the retrieved row with an
application-specific function called process_column():

while ((fetch_stat =

isc_dsql_fetch(status_vector, &stmt, 1, out_sqlda)) == 0)

{

for (i = 0; i < out_sqlda->sqld; i++)

{

process_column(sqlda->sqlvar[i]);

}

}

if (fetch_stat != 100L)

{

/* isc_dsql_fetch returns 100 if no more rows remain to be

retrieved */

SQLCODE = isc_sqlcode(status_vector);

isc_print_sqlerror(SQLCODE, status_vector);

return(1);

}

4. When all the rows are fetched, close the cursor with isc_dsql_free_statement():

isc_dsql_free_statement(status_vector, &stmt, DSQL_close);

4 Re-executing a query statement string with parameters
Once a query statement string with parameters is prepared, it can be used as often as
required in an application. Before each subsequent use, the input XSQLDA can be supplied
with new parameter and NULL indicator data. The cursor must be closed and reopened
before processing can occur.

DETERMINING AN UNKNOWN STATEMENT TYPE AT RUNTIME

API GUIDE 111

g To provide new parameters to the input XSQLDA, follow steps 3 to 5 of “Preparing a
query statement string with parameters” on page 106.

g To provide new information to the output XSQLDA, follow steps 6 to 8 of “Preparing a
query statement string with parameters” on page 106.

g To reopen a cursor and process select-list items, repeat steps 2 to 4 of “Executing a query
statement string within the context of a cursor” on page 109.

Determining an unknown statement type at runtime
An application can use isc_dsql_sql_info() to determine the statement type of an unknown
prepared statement, for example, a statement entered by the user at runtime.

Requested information can include:

g Statement type.

g Number of input parameters required by the statement.

g Number of output values returned by the statement.

g Detailed information regarding each input parameter or output value, including its
datatype, scale, and length.

To use isc_dsql_sql_info(), allocate an item-list buffer that describes the type of information
requested, and allocate a result buffer, where the function can return the desired
information. For example, to determine the statement type of an unknown, but prepared
statement, you would allocate a one-element item-list buffer, and fill it with the macro
constant, isc_info_sql_stmt_type, defined in ibase.h:

char type_item[];

type_item[] = {isc_info_sql_stmt_type};

Note Additional information item macros for requested items can be found in ibase.h
under the comment, “SQL information items.”

The result buffer must be large enough to contain any data returned by the call. The
proper size for this buffer depends on the information requested. If not enough space is
allocated, then isc_dsql_sql_info() puts the predefined value, isc_info_truncated, in the last
byte of the result buffer. Generally, when requesting statement type information, 8 bytes
is a sufficient buffer size. Declaring a larger than necessary buffer is also safe. A request
to identify a statement type returns the following information in the result buffer:

CHAPTER 6 WORKING WITH DYNAMIC SQL

112 INTERBASE 5

1. One byte containing isc_info_sql_stmt_type.

2. Two bytes containing a number, n, telling how many bytes compose the
subsequent value.

3. One or two bytes specifying the statement type. The following table lists the
statement types that can be returned:

4. A final byte containing the value isc_info_end (0).

The values placed in the result buffer are not aligned. Furthermore, all numbers are
represented in a generic format, with the least significant byte first, and the most
significant byte last. Signed numbers have the sign in the last byte. Convert the numbers
to a datatype native to your system before interpreting them.

Note All information about a statement except its type can be more easily determined by
calling functions other than isc_dsql_sql_info(). For example, to determine the information
to fill in an input XSQLDA, call isc_dsql_describe_bind(). To fill in an output XSQLDA, call
isc_dsql_prepare() or isc_dsql_describe().

Type Numeric value

isc_info_sql_stmt_select 1

isc_info_sql_stmt_insert 2

isc_info_sql_stmt_update 3

isc_info_sql_stmt_delete 4

isc_info_sql_stmt_ddl 5

isc_info_sql_stmt_get_segment 6

isc_info_sql_stmt_put_segment 7

isc_info_sql_stmt_exec_procedure 8

isc_info_sql_stmt_start_trans 9

isc_info_sql_stmt_commit 10

isc_info_sql_stmt_rollback 11

isc_info_sql_stmt_select_for_upd 12

TABLE 6.6 Statement types

API GUIDE 113

CHAPTER

7
Chapter 7Working with Blob Data

This chapter describes InterBase’s dynamically sizable datatype, called a Blob, and
describes how to work with it using API functions. Depending on a particular application,
you might need to read all or only part of the chapter.

For example, if you plan to request conversion of Blob data from one datatype to another,
such as from one bitmapped graphic format to another or from the MIDI sound format
to the Wave format, you need to read the entire chapter. To write a conversion routine,
called a filter, see “Filtering Blob data” on page 132. For further information about
working with Blob data and filters, see the Programmer’s Guide.

Note Blob filters are not available on NetWare servers.

If you do not need to request conversion of Blob data, then you only need to read the
parts of this chapter up to “Filtering Blob data” on page 132.

CHAPTER 7 WORKING WITH BLOB DATA

114 INTERBASE 5

The following table alphabetically lists the API functions for working with Blob data. The
functions will be described and demonstrated in the remainder of this chapter.

What is a Blob?
A Blob large object that cannot easily be stored in a database as one of the standard
datatypes. You can use a Blob to store large amounts of data of various types, including:

g Bitmapped images

g Sounds

g Video segments

Function Purpose

isc_blob_default_desc() Loads a Blob descriptor with default information about a Blob,
including its subtype, character set, and segment size

isc_blob_gen_bpb() Generates a Blob parameter buffer (BPB) from source and target Blob
descriptors to allow dynamic access to Blob subtype and character set
information

isc_blob_info() Returns information about an open Blob

isc_blob_lookup_desc() Determines the subtype, character set, and segment size of a Blob,
given a table name and Blob column name

isc_blob_set_desc() Initializes a Blob descriptor from parameters passed to it

isc_cancel_blob() Discards a Blob

isc_close_blob() Closes an open Blob

isc_create_blob2() Creates and opens a Blob for write access, and optionally specifies a
filter to be used to translate the Blob from one subtype to another

isc_get_segment() Retrieves data from a Blob column in a row returned by execution of a
SELECT statement

isc_open_blob2() Opens an existing Blob for retrieval, and optionally specifies a filter to
be used to translate the Blob from one subtype to another

isc_put_segment() Writes data into a Blob

TABLE 7.1 API Blob functions

WHAT IS A BLOB?

API GUIDE 115

g Text

InterBase support of Blob data provides all the advantages of a database management
system, including transaction control, maintenance, and access using standard API
function calls. Blob data is stored in the database itself. Other systems only store pointers
in the database to non-database files. InterBase stores the actual Blob data in the
database, and establishes a unique identification handle in the appropriate table to point
to the database location of the Blob. By maintaining the Blob data within the database,
InterBase greatly improves access to and management of the data.

How are Blob data stored?
Blob is the InterBase datatype that can represent various objects, such as bitmapped
images, sound, video, and text. Before you store these items in the database, you create
or manage them as platform- or product-specific files or data structures, such as:

g TIFF, PICT, .BMP, .WMF, .GEM, TARGA or other bitmapped or vector-graphic files

g MIDI or .WAV sound files

g Audio Video Interleaved Format (.AVI) or QuickTime video files

g ASCII, .MIF, .DOC, .WPx or other text files

g CAD files

You must programmatically load these files from memory into the database, as you do
any other data items or records you intend to store in InterBase. For more information
about creating a Blob and storing data into it, see “Writing data to a Blob” on page 122.

Blob subtypes
Although you manage Blob data in ways similar to other datatypes, InterBase provides
more flexible data typing rules for Blob data. Because there are many native datatypes
that you can define as Blob data, InterBase treats them generically and allows you to
define your own datatype, known as a subtype. InterBase also provides two predefined
subtypes: 0, an unstructured subtype generally applied to binary data or data of an
indeterminate type, and 1, applied to plain text.

User-defined subtypes must always be represented as negative integers between –1 and
–32,678.

A Blob column’s subtype is specified when the Blob column is defined.

CHAPTER 7 WORKING WITH BLOB DATA

116 INTERBASE 5

The application is responsible for ensuring that data stored in a Blob column agrees with
its subtype; InterBase does not check the type or format of Blob data.

Blob database storage
Rather than storing Blob data directly in the Blob field of a table record, InterBase stores
a Blob ID there. A Blob ID is a unique numeric value that references Blob data. The Blob
data is stored elsewhere in the database, in a series of Blob segments, units of Blob data
read and written in chunks. Blob segments can be of varying length. The length of an
individual segment is specified when it is written.

Segments are handy when working with data that is too large for one application memory
buffer. But it is not necessary to use multiple segments; you can put all your Blob data in
a single segment.

When an application creates a Blob, it must write data to it a segment at a time. When an
application reads a Blob, it reads a segment at a time. For more information about writing
segments, see “Writing data to a Blob” on page 122. For more information about
reading segments, see “Reading data from a Blob” on page 117.

Blob data operations
InterBase supports the following operations on Blob data:

g Reading from a Blob

g Writing to a Blob, which involves the following operations:

1. Inserting a new row that includes Blob data.

2. Replacing the data referenced by a Blob column of a row.

3. Updating the data referenced by a Blob column of a row.

g Deleting a Blob

The following sections describe how to perform these operations. These examples do not
include the use of filters to convert data from one subtype to another as it is read or
written. For information about using filters, see “Writing an application that requests
filtering” on page 139.

BLOB DATA OPERATIONS

API GUIDE 117

Dynamic SQL (DSQL) API functions and the XSQLDA data structure are needed to execute
SELECT, INSERT, and UPDATE statements required to select, insert, or update relevant Blob
data. The following sections include descriptions of the DSQL programming methods
required to execute the sample statements provided. For more information about DSQL
programming, see Chapter 6, “Working with Dynamic SQL.”

Reading data from a Blob
There are six steps required for reading data from an existing Blob:

1. Create a SELECT statement query that specifies selection of the Blob column
(and any other columns desired) in the rows of interest.

2. Prepare an output XSQLDA structure to hold the column data for each row that
is fetched.

3. Prepare the SELECT statement for execution.

4. Execute the statement.

5. Fetch the selected rows one by one.

6. Read and processing the Blob data from each row.

4 Creating the SELECT statement
Elicit a statement string from the user or create one that consists of the SQL query that
will select rows containing the Blob data of interest. For example, the following creates
an SQL query statement string that selects three columns from various rows in the
PROJECT table:

char *str =

"SELECT PROJ_NAME, PROJ_DESC, PRODUCT FROM PROJECT WHERE \

PRODUCT IN ("software", "hardware", "other") ORDER BY PROJ_NAME";

4 Preparing the output XSQLDA

Most queries return one or more rows of data, referred to as a select-list. An output
XSQLDA must be created to store the column data for each row that is fetched. For a Blob
column, the column data is an internal Blob identifier (Blob ID) that is needed to access
the actual data. To prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XSQLDA. For example, the following declaration
creates an XSQLDA called out_sqlda:

XSQLDA *out_sqlda;

CHAPTER 7 WORKING WITH BLOB DATA

118 INTERBASE 5

2. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
XSQLDA must contain one XSQLVAR substructure for each column to be
fetched. The following statement allocates storage for an output XSQLDA
(out_sqlda) with three XSQLVAR substructures:

out_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(3));

3. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the sqln field
of the XSQLDA to indicate the number of XSQLVAR substructures allocated:

out_sqlda->version = SQLDA_VERSION1;

out_sqlda->sqln = 3;

4 Preparing the SELECT statement for execution
After an XSQLDA is created for holding the column data for each selected row, the query
statement string can be prepared for execution. Follow these steps:

1. Declare and initialize an SQL statement handle, then allocate it with
isc_dsql_allocate_statement():

isc_stmt_handle stmt; /* Declare a statement handle. */

stmt = NULL; /* Set handle to NULL before allocation. */

isc_dsql_allocate_statement(status_vector, &db_handle, &stmt);

2. Ready the statement string for execution with isc_dsql_prepare(). This checks
the string (str) for syntax errors, parses it into a format that can be efficiently
executed, and sets the statement handle (stmt) to refer to this parsed format.
The statement handle is used in a later call to isc_dsql_execute().

If isc_dsql_prepare() is passed a pointer to the output XSQLDA, as in the following
example, it will fill in most fields of the XSQLDA and all its XSQLVAR substructures with
information such as the datatype, length, and name of the corresponding columns in
the statement.

A sample call to isc_dsql_prepare() is:

isc_dsql_prepare(

status_vector,

&trans, /* Set by previous isc_start_transaction() call.

*/

&stmt, /* Statement handle set by this function call. */

0, /* Specifies statement string is null-terminated.

*/

str, /* Statement string. */

SQLDA_VERSION1,/* XSQLDA version number. */

out_sqlda /* XSQLDA for storing column data. */

BLOB DATA OPERATIONS

API GUIDE 119

);

3. Set up an XSQLVAR structure for each column. Setting up an XSQLVAR structure
involves the following steps:

For columns whose types are known at compile time:

- Specify the column’s datatype (if it was not set by isc_dsql_prepare(), as previously
described).

- Point the sqldata field of the XSQLVAR to an appropriate local variable.

For columns whose types are not known until run time:

- Coerce the item’s datatype (optional), for example, from SQL_VARYING to SQL_TEXT.

- Dynamically allocate local storage for the data pointed to by the sqldata field of the
XSQLVAR.

For both:

- Specify the number of bytes of data to be retrieved into sqldata.

- Provide a NULL value indicator for the parameter.

Data retrieval for Blob (and array) columns is different from other types of columns,
so the XSQLVAR fields must be set differently. For non-Blob (and non-array) columns,
isc_dsql_prepare() sets each XSQLVAR sqltype field to the appropriate field type, and the
data retrieved when a select-list row’s data is fetched is placed into the sqldata space
allocated for the column. For Blob columns, the type must be set to SQL_Blob (or
SQL_Blob + 1 if a NULL indicator is desired). InterBase stores the internal Blob
identifier (Blob ID), not the Blob data, in the sqldata space when a row’s data is
fetched, so you must point sqldata to an area the size of a Blob ID. To see how to
retrieve the actual Blob data once you have a Blob ID, see “Reading data from a
Blob” on page 117.

The following code example illustrates the assignments for Blob and non-Blob
columns whose types are known at compile time. For examples of handling datatypes
that are unknown until run time, see Chapter 6, “Working with Dynamic SQL.”

#define PROJLEN 20

#define TYPELEN 12

ISC_QUAD blob_id;

char proj_name[PROJLEN + 1];

char prod_type[TYPELEN + 1];

short flag0, flag1, flag2;

out_sqlda->sqlvar[0].sqldata = proj_name;

out_sqlda->sqlvar[0].sqltype = SQL_TEXT + 1;

out_sqlda->sqlvar[0].sqllen = PROJLEN;

out_sqlda->sqlvar[0].sqlind = &flag0;

CHAPTER 7 WORKING WITH BLOB DATA

120 INTERBASE 5

out_sqlda->sqlvar[1].sqldata = (char *) &blob_id;

out_sqlda->sqlvar[1].sqltype = SQL_Blob + 1;

out_sqlda->sqlvar[1].sqllen = sizeof(ISC_QUAD);

out_sqlda->sqlvar[1].sqlind = &flag1;

out_sqlda->sqlvar[2].sqldata = prod_type;

out_sqlda->sqlvar[2].sqltype = SQL_TEXT + 1;

out_sqlda->sqlvar[2].sqllen = TYPELEN;

out_sqlda->sqlvar[2].sqlind = &flag2;

4 Executing the statement
Once the query statement string is prepared, it can be executed:

isc_dsql_execute(

status_vector,

&trans, /* set by previous isc_start_transaction() call */

&stmt, /* allocated above by isc_dsql_allocate_statement() */

1, /* XSQLDA version number */

NULL /* NULL since stmt doesn’t have input values */

);

This statement creates a select list, the rows returned by execution of the statement.

4 Fetching selected rows
A looping construct is used to fetch (into the output XSQLDA) the column data for a single
row at a time from the select-list and to process each row before the next row is fetched.
Each execution of isc_dsql_fetch() fetches the column data into the corresponding XSQLVAR
substructures of out_sqlda. For the Blob column, the Blob ID, not the actual Blob data,
is fetched.

ISC_STATUS fetch_stat;

long SQLCODE;

. . .

while ((fetch_stat =

isc_dsql_fetch(status_vector, &stmt, 1, out_sqlda))

== 0)

{

proj_name[PROJLEN] = ’\0’;

prod_type[TYPELEN] = ’\0’;

printf("\nPROJECT: %–20s TYPE: %–15s\n\n",

proj_name, prod_type);

/* Read and process the Blob data (see next section) */

}

if (fetch_stat != 100L)

BLOB DATA OPERATIONS

API GUIDE 121

{

/* isc_dsql_fetch returns 100 if no more rows remain to be

retrieved */

SQLCODE = isc_sqlcode(status_vector);

isc_print_sqlerror(SQLCODE, status_vector);

return(1);

}

4 Reading and processing the Blob data
To read and process the Blob data:

1. Declare and initialize a Blob handle:

isc_blob_handle blob_handle; /* Declare a Blob handle. */

blob_handle = NULL; /* Set handle to NULL before using it */

2. Create a buffer for holding each Blob segment as it is read. Its size should be
the maximum size segment your program expects to be read from the Blob.

char blob_segment[80];

3. Declare an unsigned short variable into which InterBase will store the actual
length of each segment read:

unsigned short actual_seg_len;

4. Open the Blob with the fetched blob_id:

isc_open_blob2(

status_vector,

&db_handle,

&trans,

&blob_handle,/* set by this function to refer to the Blob */

&blob_id, /* Blob ID put into out_sqlda by isc_dsql_fetch() */

0, /* BPB length = 0; no filter will be used */

NULL /* NULL BPB, since no filter will be used */

);

5. Read all the Blob data by calling isc_get_segment() repeatedly to get each Blob
segment and its length. Process each segment read. In the following example,
“processing” consists of printing each Blob as it is read:

blob_stat = isc_get_segment(

status_vector,

&blob_handle, /* set by isc_open_blob2()*/

&actual_seg_len, /* length of segment read */

sizeof(blob_segment), /* length of segment buffer */

CHAPTER 7 WORKING WITH BLOB DATA

122 INTERBASE 5

blob_segment /* segment buffer */

);

while (blob_stat == 0 || status_vector[1] == isc_segment)

{

/* isc_get_segment returns 0 if a segment was successfully read.

*/

/* status_vector[1] is set to isc_segment if only part of a */

/* segment was read due to the buffer (blob_segment) not being */

/* large enough. In that case, the following calls to */

/* isc_get_segment() read the rest of the buffer. */

printf("%*.*s", actual_seg_len, actual_seg_len, blob_segment);

blob_stat = isc_get_segment(status_vector, &blob_handle,

&actual_seg_len, sizeof(blob_segment), blob_segment);

printf("\n");

};

printf("\n");

6. Close the Blob:

isc_close_blob(status_vector, &blob_handle);

Writing data to a Blob
Before you can create a new Blob and write data to it, you must do at least one of the
following:

g Include Blob data in a row to be inserted into a table.

g Replace the data referenced by a Blob column of a row.

g Update the data referenced by a Blob column of a row.

The entry in a Blob column of a row does not actually contain Blob data. Rather, it has
a Blob ID referring to the data, which is stored elsewhere. So, to set or modify a Blob
column, you need to set (or reset) the Blob ID stored in it. If a Blob column contains a
Blob ID, and you modify the column to refer to a different Blob (or to contain NULL), the
Blob referenced by the previously stored Blob ID will be deleted during the next garbage
collection.

BLOB DATA OPERATIONS

API GUIDE 123

All these operations require the following steps:

1. Prepare an appropriate DSQL statement. This will be an INSERT statement if
you are inserting a new row into a table, or an UPDATE statement for
modifying a row. Each of these statements will need a corresponding input
XSQLDA structure for supplying parameter values to the statement at run time.
The Blob ID of a new Blob will be one of the values passed.

2. Create a new Blob, and write data into it.

3. Associate the Blob ID of the new Blob with the Blob column of the table row
by executing the UPDATE or INSERT statement.

Note that you cannot update Blob data directly. If you want to modify Blob data, you
must:

g Create a new Blob.

g Read the old Blob data into a buffer where you can edit or modify it.

g Write the modified data to the new Blob.

g Prepare and execute an UPDATE statement that will modify the Blob column to contain
the Blob ID of the new Blob, replacing the old Blob’s Blob ID.

The sections below describe the steps required to insert, replace, or update Blob data.

4 Preparing the UPDATE or INSERT statement
To prepare an UPDATE or INSERT statement for execution, follow these steps:

1. Elicit an UPDATE or INSERT statement string from the user or create one for
inserting a row or updating the row containing the Blob column of interest.
For example, the following statement is for updating the Blob column named
PROJ_DESC in the row of the table, PROJECT, whose PROJ_ID field contains a
value specified at run time:

char *upd_str =

"UPDATE PROJECT SET PROJ_DESC = ? WHERE PROJ_ID = ?";

As an example of an INSERT statement, the following inserts a new row containing
values in four columns:

char *in_str = "INSERT INTO PROJECT (PROJ_NAME, PROJ_DESC, PRODUCT,

PROJ_ID) VALUES (?, ?, ?, ?)";

The remaining steps refer only to UPDATE statements, but the actions apply to
INSERT statements as well.

CHAPTER 7 WORKING WITH BLOB DATA

124 INTERBASE 5

2. Declare a variable to hold the input XSQLDA needed to supply parameter
values to the UPDATE statement at run time. For example, the following
declaration creates an XSQLDA called in_sqlda:

XSQLDA *in_sqlda;

3. Allocate memory for the input XSQLDA using the XSQLDA_LENGTH macro. The
XSQLDA must contain one XSQLVAR substructure for each parameter to be
passed to the UPDATE statement. The following statement allocates storage for
an input XSQLDA (in_sqlda) with two XSQLVAR substructures:

in_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(2));

4. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the sqln field
to indicate the number of XSQLVAR structures allocated:

in_sqlda->version = SQLDA_VERSION1;

in_sqlda->sqln = 2;

5. Set up the XSQLVAR structure in the XSQLDA for each parameter to be passed.
Setting up an XSQLVAR structure involves the following steps:

- Specify the item’s datatype

- For parameters whose types are known at compile time: Point the sqldata field of
the XSQLVAR to an appropriate local variable that will contain the data to be passed

- For parameters whose types are not known until run time: Allocate local storage for
the data pointed to by the sqldata field of the XSQLVAR

- Specify the number of bytes of data

Data storage for Blob (and array) columns is different from other types of columns,
so the XSQLVAR fields must be set differently. For non-Blob and non-array columns,
input parameter data comes from the space pointed to by sqldata. For Blob columns,
you must set the type to SQL_Blob (or SQL_Blob + 1 if you want a NULL indicator).
Your application must store space for the internal Blob identifier, not the Blob data,
in the sqldata space. For more information about creating a Blob, storing its ID in the
sqldata space, and associating the Blob with a column, see “Creating a new Blob and
storing data” on page 125.

The following code example illustrates the assignments for one text column and one
Blob column, where the column types are known at compile time. For examples of
handling datatypes that are unknown until run time, see Chapter 6, “Working with
Dynamic SQL.”

#define PROJLEN 5

char proj_id[PROJLEN + 1];

ISC_QUAD blob_id;

BLOB DATA OPERATIONS

API GUIDE 125

in_sqlda->sqlvar[0].sqldata = (char *) &blob_id;

in_sqlda->sqlvar[0].sqltype = SQL_Blob + 1;

in_sqlda->sqlvar[0].sqllen = sizeof(ISC_QUAD);

in_sqlda->sqlvar[1].sqldata = proj_id;

in_sqlda->sqlvar[1].sqltype = SQL_TEXT;

in_sqlda->sqlvar[1].sqllen = 5;

The proj_id variable should be assigned a value at run time (unless the value is
known at compile time). The blob_id variable should be set to refer to the newly
created Blob, as described in the following sections.

4 Creating a new Blob and storing data
To create a new Blob containing the data to be written:

1. Declare and initialize a Blob handle:

isc_blob_handle blob_handle; /* Declare a Blob handle. */

blob_handle = NULL; /* Set handle to NULL before using it */

2. Declare and initialize a Blob ID:

ISC_QUAD blob_id; /* Declare a Blob ID. */

blob_id = NULL; /* Set handle to NULL before using it */

3. Create a new Blob by calling isc_create_blob2():

isc_create_blob2(

status_vector,

&db_handle,

&trans,

&blob_handle, /* set by this function to refer to the new Blob */

&blob_id, /* Blob ID set by this function */

0, /* Blob Parameter Buffer length = 0; no filter will be used

*/

NULL /* NULL Blob Parameter Buffer, since no filter will be used

*/

);

This function creates a new Blob, opens it for write access, and sets blob_handle to
point to the new Blob.

isc_create_blob2() also assigns the Blob a Blob ID, and sets blob_id to point to the Blob
ID. Note that blob_id is the variable pointed to by the sqldata field of the UPDATE
statement input parameter that specifies the Blob column to be updated. Thus, when
the UPDATE statement is executed, this new Blob will be used to update the Blob
column.

CHAPTER 7 WORKING WITH BLOB DATA

126 INTERBASE 5

4. Write all the data to be written to the Blob by making a series of calls to
isc_put_segment(). The following example reads lines of data, and concatenates
each to the Blob referenced by blob_handle. (get_line() reads the next line of
data to be written.)

char *line;

unsigned short len;

. . .

line = get_line();

while (line)

{

len = strlen(line);

isc_put_segment(

status_vector,

&blob_handle,/* set by previous isc_create_blob2() */

len, /* length of buffer containing data to write */

line /* buffer containing data to write into Blob */

);

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector);

return(1);

};

line = get_line();

};

5. Close the Blob:

isc_close_blob(status_vector, &blob_handle);

4 Associating the new Blob with the Blob column
Execute the UPDATE statement to associate the new Blob with the Blob column in the row
selected by the statement:

isc_dsql_execute_immediate(

status_vector,

&db_handle,

&trans,

0, /* indicates string to execute is null-terminated */

upd_str, /* UPDATE statement string to be executed */

1, /* XSQLDA version number */

in_sqlda /* XSQLDA supplying parameters to UPDATE statement */

);

REQUESTING INFORMATION ABOUT AN OPEN BLOB

API GUIDE 127

Deleting a Blob
There are four ways to delete a Blob:

g Delete the row containing the Blob. You can use DSQL to execute a DELETE statement.

g Replace the Blob with a different one. If a Blob column contains a Blob ID, and you
modify the column to refer to a different Blob, the Blob referenced by the previously
stored Blob ID will be deleted during the next garbage collection.

g Reset to NULL the column referring to the Blob, for example, by using DSQL to execute a
statement like the following:

UPDATE PROJECT SET PROJ_DESC = NULL WHERE PROJ_ID = "VBASE"

The Blob referenced by the previously stored Blob ID will be deleted during the next
garbage collection.

g Discard a Blob after it has been created but before it has been associated with a particular
column of a table row. Use the isc_cancel_blob() function, as in:

isc_cancel_blob(status_vector, &blob_handle);

Requesting information about an open Blob
After an application opens a Blob, it can obtain information about the Blob. The
isc_blob_info() call enables an application to query for Blob information such as the total
number of segments in the Blob, or the length, in bytes, of the longest segment.

In addition to a pointer to the error status vector and a Blob handle, isc_blob_info() requires
two application-provided buffers, an item-list buffer, where the application specifies the
information it needs, and a result buffer, where InterBase returns the requested
information. An application populates the item-list buffer with information requests prior
to calling isc_blob_info(), and passes it both a pointer to the item-list buffer, and the size,
in bytes, of that buffer.

The application must also create a result buffer large enough to hold the information
returned by InterBase. It passes both a pointer to the result buffer, and the size, in bytes,
of that buffer to isc_blob_info(). If InterBase attempts to pass back more information than
can fit in the result buffer, it puts the value, isc_info_truncated, defined in ibase.h, in the
final byte of the result buffer.

CHAPTER 7 WORKING WITH BLOB DATA

128 INTERBASE 5

Item-list buffer items and result buffer values
The item-list buffer is a char array that holds a sequence of byte values, one per requested
item of information. Each byte is an item type, specifying the kind of information desired.
Compile-time constants for all item types are defined in ibase.h:

#define isc_info_blob_num_segments 4

#define isc_info_blob_max_segment 5

#define isc_info_blob_total_length 6

#define isc_info_blob_type 7

The result buffer returns a series of clusters of information, one per item requested. Each
cluster consists of three parts:

1. A one-byte item type. Each is the same as one of the item types in the item-list
buffer.

2. A 2-byte number specifying the number of bytes that follow in the remainder
of the cluster.

3. A value, stored in a variable number of bytes, whose interpretation depends
on the item type.

A calling program is responsible for interpreting the contents of the result buffer and for
deciphering each cluster as appropriate.

The clusters returned to the result buffer are not aligned. Furthermore, all numbers are
represented in a generic format, with the least significant byte first, and the most
significant byte last. Signed numbers have the sign in the last byte. Convert the numbers
to a datatype native to your system, if necessary, before interpreting them. The API call,
isc_vax_integer(), can be used to perform the conversion.

The following table lists items about which information can be requested and returned,
and the values reported:

Request and return item Return value

isc_info_blob_num_segments Total number of segments

isc_info_blob_max_segment Length of the longest segment

isc_info_blob_total_length Total size, in bytes, of Blob

isc_info_blob_type Type of Blob (0: segmented, or 1: stream)

TABLE 7.2 Blob request and return items

REQUESTING INFORMATION ABOUT AN OPEN BLOB

API GUIDE 129

In addition to the information InterBase returns in response to a request, InterBase can
also return one or more of the following status messages to the result buffer. Each status
message is one unsigned byte in length:

isc_blob_info() call example
The following code requests the number of segments and the maximum segment size for
a Blob after it is opened, then examines the result buffer:

char blob_items[] = {

isc_info_blob_max_segment, isc_info_blob_num_segments};

char res_buffer[20], *p, item;

short length;

SLONG max_size = 0L, num_segments = 0L;

ISC_STATUS status_vector[20];

isc_open_blob2(

status_vector,

&db_handle, /* database handle, set by isc_attach_database() */

&tr_handle, /* transaction handle, set by isc_start_transaction()

*/

&blob_handle, /* set by this function to refer to the Blob */

&blob_id, /* Blob ID of the Blob to open */

0, /* BPB length = 0; no filter will be used */

NULL /* NULL BPB, since no filter will be used */

);

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector);

return(1);

}

isc_blob_info(

Item Description

isc_info_end End of the messages

isc_info_truncated Result buffer is too small to hold any more requested information

isc_info_error Requested information is unavailable. Check the status vector for an
error code and message

TABLE 7.3 Status message return items

CHAPTER 7 WORKING WITH BLOB DATA

130 INTERBASE 5

status_vector,

&blob_handle, /* Set in isc_open_blob2() call above. */

sizeof(blob_items),/* Length of item-list buffer. */

blob_items, /* Item-list buffer. */

sizeof(res_buffer),/* Length of result buffer. */

res_buffer /* Result buffer */

);

if (status_vector[0] == 1 && status_vector[1])

{

/* An error occurred. */

isc_print_status(status_vector);

isc_close_blob(status_vector, &blob_handle);

return(1);

};

/* Extract the values returned in the result buffer. */

for (p = res_buffer; *p != isc_info_end ;)

{

item = *p++

length = (short)isc_vax_integer(p, 2);

p += 2;

switch (item)

{

case isc_info_blob_max_segment:

max_size = isc_vax_integer(p, length);

break;

case isc_info_blob_num_segments:

num_segments = isc_vax_integer(p, length);

break;

case isc_info_truncated:

/* handle error */

break;

default:

break;

}

p += length;

};

BLOB DESCRIPTORS

API GUIDE 131

Blob descriptors
A Blob descriptor is used to provide dynamic access to Blob information. For example, it
can be used to store information about Blob data for filtering (conversion) purposes, such
as character set information for text Blob data and subtype information for text and
non-text Blob data. Two Blob descriptors are needed whenever a filter will be used when
writing to or reading from a Blob: one to describe the filter source data, and the other to
describe the target.

A Blob descriptor is a structure defined in the ibase.h header file as follows:

typedef struct {

 short blob_desc_subtype; /* type of Blob data */

 short blob_desc_charset; /* character set */

 short blob_desc_segment_size; /* segment size */

 unsigned char blob_desc_field_name [32]; /* Blob column name */

 unsigned char blob_desc_relation_name [32]; /* table name */

} ISC_Blob_DESC;

For more information about the character sets recognized by InterBase, see the Language
Reference.

The segment size of a Blob is the maximum number of bytes that an application is
expected to write to or read from the Blob. You can use this size to allocate your own
buffers.

The blob_desc_relation_name and blob_desc_field_name fields contain null-
terminated strings.

Populating a Blob descriptor
There are four possible ways to populate a Blob descriptor. You can do so by:

g Calling isc_blob_default_desc(). This stores default values into the descriptor fields. The
default subtype is 1 (TEXT), segment size is 80 bytes, and charset is the default charset for
your process.

g Calling isc_blob_lookup_desc(). This accesses the database system metadata tables to look
up and copy information for the specified Blob column into the descriptor fields.

g Calling isc_blob_set_desc(). This initializes the descriptor from parameters you call it with,
rather than accessing the database metadata.

g Setting the descriptor fields directly.

CHAPTER 7 WORKING WITH BLOB DATA

132 INTERBASE 5

The following example calls isc_blob_lookup_desc() to look up the current subtype and
character set information for a Blob column named PROJ_DESC in a table named PROJECT.
It stores the information into the source descriptor, from_desc.

isc_blob_lookup_desc (

status_vector,

&db_handle; /* Set by previous isc_attach_database() call. */

&tr_handle, /* Set by previous isc_start_transaction() call. */

"PROJECT", /* Table name. */

"PROJ_DESC", /* Column name. */

&from_desc, /* Blob descriptor filled in by this function call. */

&global /* Global column name, returned by this function. */

)

For more information about the usage of Blob descriptors in applications that request
data filtering, and for further examples of populating Blob descriptors, see “Writing an
application that requests filtering” on page 139.

Filtering Blob data
A Blob filter is a routine that translates Blob data from one subtype to another.

InterBase includes a set of special internal Blob filters that convert from subtype 0
(unstructured data) to subtype 1 (TEXT), and from subtype 1 to subtype 0.

In addition to using these standard filters, you can write your own external filters to
provide special data translation. For example, you might develop a filter to convert one
image format to another, for instance to display the same image on monitors with
different resolutions. Or you might convert a binary Blob to plain text and back again to
be able to move the file more easily from one system to another.

If you define filters, you can assign them subtype identifiers from –32,768 to –1.

The following sections provide an overview of how to write Blob filters, followed by
details of how to write an application that requires filtering. For more information about
writing Blob filters, see the Programmer’s Guide.

Note Blob filters are available for databases residing on all InterBase server platforms
except NetWare, where Blob filters cannot be created or used.

FILTERING BLOB DATA

API GUIDE 133

Using your own filters
Unlike the standard InterBase filters that convert between subtype 0 and subtype 1, an
external Blob filter is generally part of a library of routines you create and link to an
application.

You can write Blob filters in C or Pascal (or any language that can be called from C). To
use your own filters, follow these steps:

1. Decide which filters you need to write.

2. Write the filters in a host language.

3. Build a shared filter library.

4. Make the filter library available.

5. Define the filters to the database.

6. Write an application that requests filtering.

Steps numbered 2, 5, and 6 are described in greater detail in the following sections.

Declaring an external Blob filter to the database
To declare an external filter to a database, use the DECLARE FILTER statement. For example,
the following statement declares the filter, SAMPLE:

DECLARE FILTER SAMPLE

INPUT TYPE –1 OUTPUT_TYPE –2

ENTRY POINT "FilterFunction"

MODULE_NAME "filter.dll";

In the example, the filter’s input subtype is defined as –1 and its output subtype as
–2. If subtype –1 specifies lowercase text, and subtype –2 uppercase text, then the
purpose of filter SAMPLE would be to translate Blob data from lowercase text to uppercase
text.

The ENTRY_POINT and MODULE_NAME parameters specify the external routine that
InterBase calls when the filter is invoked. The MODULE_NAME parameter specifies filter.dll,
the dynamic link library containing the filter’s executable code. The ENTRY_POINT
parameter specifies the entry point into the DLL. Although the example shows only a
simple file name, it is good practice to specify a fully-qualified path name, since users of
your application need to load the file.

CHAPTER 7 WORKING WITH BLOB DATA

134 INTERBASE 5

Writing an external Blob filter
If you choose to write your own filters, you must have a detailed understanding of the
datatypes you plan to translate. InterBase does not do strict datatype checking on Blob
data; it is your responsibility.

4 Defining the filter function
When writing a filter, you must include an entry point, known as a filter function, in the
declaration section of the program. InterBase calls the filter function when an application
performs a Blob access operation on a Blob specified to use the filter. All communication
between InterBase and the filter is through the filter function. The filter function itself
may call other functions that comprise the filter executable.

You declare the name of the filter function and the name of the filter executable with the
ENTRY_POINT and MODULE_NAME parameters of the DECLARE FILTER statement.

A filter function must have the following declaration calling sequence:

filter_function_name(short action, isc_blob_ctl control);

The parameter, action, is one of eight possible action macro definitions, and the
parameter, control, is an instance of the isc_blob_ctl Blob control structure, defined in
the InterBase header file, ibase.h. These parameters are discussed later in this chapter.

The following listing of a skeleton filter declares the filter function, jpeg_filter:

#include <ibase.h>

#define SUCCESS 0

#define FAILURE 1

ISC_STATUS jpeg_filter(short action, isc_blob_ctl control)

{

ISC_STATUS status = SUCCESS;

switch (action)

{

case isc_blob_filter_open:

. . .

break;

case isc_blob_filter_get_segment:

. . .

break;

case isc_blob_filter_create:

. . .

break;

case isc_blob_filter_put_segment:

FILTERING BLOB DATA

API GUIDE 135

. . .

break;

case isc_blob_filter_close:

. . .

break;

case isc_blob_filter_alloc:

. . .

break;

case isc_blob_filter_free:

. . .

break;

case isc_blob_filter_seek:

. . .

break;

default:

. . .

break;

}

return status;

}

InterBase passes one of eight possible actions to the filter function, jpeg_filter, by way of
the action parameter, and also passes an instance of the Blob control structure,
isc_blob_ctl, by way of the parameter, control.

The ellipses (…) in the previous listing represent code that performs some operations
based on each action, or event, that is listed in the case statement. Most of the actions
correspond to API functions called by an application. For more information regarding the
types of code to write for each action, see the Programmer’s Guide.

4 Defining the Blob control structure
The isc_blob_ctl Blob control structure provides the fundamental method of data
exchange between InterBase and a filter.

The Blob control structure is defined as a typedef, isc_blob_ctl, in ibase.h, as follows:

typedef struct isc_blob_ctl {

ISC_STATUS (*ctl_source)();

/* Internal InterBase Blob access routine. */

struct isc_blob_ctl *ctl_source_handle;

/* Instance of isc_blob_ctl to pass to

internal InterBase Blob access routine. */

short ctl_to_sub_type;/* Target subtype. */

short ctl_from_sub_type;/* Source subtype. */

CHAPTER 7 WORKING WITH BLOB DATA

136 INTERBASE 5

unsigned short ctl_buffer_length; /* Length of ctl_buffer. */

unsigned short ctl_segment_length; /* Length of current segment. */

unsigned short ctl_bpb_length; /* Blob parameter buffer length. */

char *ctl_bpb; /* Pointer to Blob parameter buffer. */

unsigned char *ctl_buffer; /* Pointer to segment buffer. */

ISC_LONG ctl_max_segment; /* Length of longest Blob segment. */

ISC_LONG ctl_number_segments; /* Total number of segments. */

ISC_LONG ctl_total_length; /* Total length of Blob. */

ISC_STATUS *ctl_status;/* Pointer to status vector. */

long ctl_data[8];/* Application-specific data. */

} *ISC_Blob_CTL;

The purpose of certain isc_blob_ctl fields depend on the action being performed.

For example, when an application calls the isc_put_segment() API function, InterBase
passes an isc_blob_filter_put_segment action to the filter function. The buffer pointed to
by the ctl_buffer field of the control structure passed to the filter function contains the
segment data to be written, as specified by the application in its call to isc_put_segment().
Because the buffer contains information passed into the filter function, it is called an IN
field. The filter function should include instructions in the case statement under the
isc_blob_filter_put_segment case for performing the filtering and then passing the data
on for writing to the database. This can be done by calling the *ctl_source internal
InterBase Blob access routine. For more information about ctl_source, see the
Programmer’s Guide.

On the other hand, when an application calls the isc_get_segment() API function, the buffer
pointed to by ctl_buffer in the control structure passed to a filter function is empty. In
this situation, InterBase passes an isc_blob_filter_get_segment action to the filter
function. The filter function isc_blob_filter_get_segment action handling should include
instructions for filling ctl_buffer with segment data from the database to return to the
application. This can be done by calling the *ctl_source internal InterBase Blob access
routine. In this case, because the buffer is used for filter function output, it is called an
OUT field.

FILTERING BLOB DATA

API GUIDE 137

The following table describes each of the fields in the isc_blob_ctl Blob control structure,
and whether they are used for filter function input (IN), or output (OUT).

Field name Description

(*ctl_source)() Pointer to the internal InterBase Blob access routine (IN)

*ctl_source_handle Pointer to an instance of isc_blob_ctl to be passed to the internal InterBase Blob
access routine (IN)

ctl_to_sub_type Target subtype: information field provided to support multi-purpose filters that
can perform more than one kind of translation; this field and the next one
enable such a filter to decide which translation to perform (IN)

ctl_from_sub_type Source subtype: information field provided to support multi-purpose filters that
can perform more than one kind of translation; this field and the previous one
enable such a filter to decide which translation to perform (IN)

ctl_buffer_length For isc_blob_filter_put_segment, field is an IN field that contains the length of
the segment data contained in ctl_buffer

For isc_blob_filter_get_segment, field is an IN field set to the size of the buffer
pointed at by ctl_buffer, which is used to store the retrieved Blob data

ctl_segment_length Length of current segment. For isc_blob_filter_put_segment, field is not used

For isc_blob_filter_get_segment, field is an OUT field set to the size of the
retrieved segment (or partial segment, in the case when the buffer length
ctl_buffer_length is less than the actual segment length)

ctl_bpb_length Length of the Blob parameter buffer

*ctl_bpb Pointer to the Blob parameter buffer

*ctl_buffer Pointer to segment buffer. For isc_blob_filter_put_segment, field is an IN field
that contains the segment data

For isc_blob_filter_get_segment, field is an OUT field the filter function fills with
segment data for return to the application

TABLE 7.4 isc_blob_ctl structure field descriptions

CHAPTER 7 WORKING WITH BLOB DATA

138 INTERBASE 5

4 Programming filter function actions
When an application invokes a Blob API function on a Blob to be filtered, InterBase
passes a corresponding action message to the filter function by way of the action
parameter. There are eight possible actions. The following action macro definitions are
declared in the ibase.h file:

#define isc_blob_filter_open 0

#define isc_blob_filter_get_segment 1

#define isc_blob_filter_close 2

#define isc_blob_filter_create 3

#define isc_blob_filter_put_segment 4

#define isc_blob_filter_alloc 5

#define isc_blob_filter_free 6

#define isc_blob_filter_seek 7

ctl_max_segment Length, in bytes, of the longest segment in the Blob. Initial value is 0. The filter
function sets this field. This field is information only.

ctl_number_segments Total number of segments in the Blob. Initial value is 0. The filter function sets
this field. This field is information only.

ctl_total_length Total length, in bytes, of the Blob. Initial value is 0. The filter function sets this
field. This field is information only.

*ctl_status Pointer to InterBase status vector. (OUT)

ctl_data [8] 8-element array of application-specific data. Use this field to store resource
pointers, such as memory pointers and file handles created by the
isc_blob_filter_open handler, for example. Then, the next time the filter
function is called, the resource pointers will be available for use.
(IN/OUT)

Field name Description

TABLE 7.4 isc_blob_ctl structure field descriptions (continued)

FILTERING BLOB DATA

API GUIDE 139

The following table lists the actions, and specifies when the filter function is invoked with
each particular action. Most of the actions are the result of events that occur when an
application invokes a Blob API function.

This concludes the overview of writing Blob filters. For detailed information about filters
and how to program filter function actions, as well as a reference to a filter application
example, see the Programmer’s Guide.

Writing an application that requests filtering
To request filtering of Blob data as it is read from or written to a Blob, follow these steps
in your application:

1. Create a Blob parameter buffer (BPB) specifying the source and target
subtypes, and optionally character sets (for TEXT subtypes).

2. Call either isc_open_blob2() or isc_create_blob2() to open a Blob for read or write
access, respectively. In the call, pass the BPB, whose information InterBase
will use to determine which filter should be called.

Action When filter is invoked with corresponding action

isc_blob_filter_open Invoked when an application calls isc_open_blob2()

isc_blob_filter_get_segment Invoked when an application calls isc_get_segment()

isc_blob_filter_close Invoked when an application calls isc_close_blob()

isc_blob_filter_create Invoked when an application calls isc_create_blob2()

isc_blob_filter_put_segment Invoked when an application calls isc_put_segment()

isc_blob_filter_alloc Invoked when InterBase initializes filter processing; not a result of a
particular application action

isc_blob_filter_free Invoked when InterBase ends filter processing; not a result of a
particular application action

isc_blob_filter_seek Reserved for internal filter use; not used by external filters

TABLE 7.5 Action constants

CHAPTER 7 WORKING WITH BLOB DATA

140 INTERBASE 5

4 Understanding the Blob parameter buffer
A Blob parameter buffer (BPB) is needed whenever a filter will be used when writing to
or reading from a Blob.

The BPB is a char array variable, specifically declared in an application, that contains the
source and target subtypes. When data is read from or written to the Blob associated with
the BPB, InterBase will automatically invoke an appropriate filter, based on the source
and target subtypes specified in the BPB.

If the source and target subtypes are both 1 (TEXT), and the BPB also specifies different
source and target character sets, then when data is read from or written to the Blob
associated with the BPB, InterBase will automatically convert each character from the
source to the target character set.

A Blob parameter buffer can be generated in one of two ways:

1. Indirectly, through API calls to create source and target descriptors and then
generate the BPB from the information in the descriptors.

2. Directly by populating the BPB array with appropriate values.

If you generate a BPB via API calls, you do not need to know the format of the BPB. But
if you wish to directly generate a BPB, then you must know the format.

Both approaches are described in the following sections. The format of the BPB is
documented in the section about directly populating the BPB.

GENERATING A BLOB PARAMETER BUFFER USING API CALLS

To generate a BPB indirectly, use API calls to create source and target Blob descriptors,
and then call isc_blob_gen_bpb() to generate the BPB from the information in the
descriptors. Follow these steps:

1. Declare two Blob descriptors, one for the source, and the other for the target.
For example,

#include "ibase.h"

ISC_Blob_DESC from_desc, to_desc;

2. Store appropriate information in the Blob descriptors, by calling one of the
functions isc_blob_default_desc(), isc_blob_lookup_desc(), or isc_blob_set_desc(), or
by setting the descriptor fields directly. The following example looks up the
current subtype and character set information for a Blob column named
GUIDEBOOK in a table named TOURISM, and stores it into the source
descriptor, from_desc. It then sets the target descriptor, to_desc to the default
subtype (TEXT) and character set, so that the source data will be converted to
plain text.

isc_blob_lookup_desc (

FILTERING BLOB DATA

API GUIDE 141

status_vector,

&db_handle; /* set in previous isc_attach_database() call */

&tr_handle, /* set in previous isc_start_transaction() call */

“TOURISM", /* table name */

"GUIDEBOOK", /* column name */

&from_desc, /* Blob descriptor filled in by this function call */

&global);

if (status_vector[0] == 1 && status_vector[1])

{

/* process error */

isc_print_status(status_vector);

return(1);

};

isc_blob_default_desc (

&to_desc, /* Blob descriptor filled in by this function call */

"", /* NULL table name; it's not needed in this case */

""); /* NULL column name; it's not needed in this case */

For more information about Blob descriptors, see “Blob descriptors” on page 131.

3. Declare a character array which will be used as the BPB. Make sure it is at
least as large as all the information that will be stored in the buffer.

char bpb[20];

4. Declare an unsigned short variable into which InterBase will store the actual
length of the BPB data:

unsigned short actual_bpb_length;

5. Call isc_blob_gen_bpb() to populate the BPB based on the source and target
Blob descriptors passed to isc_blob_gen_bpb(). For example,

isc_blob_gen_bpb(

status_vector,

&to_desc, /* target Blob descriptor */

&from_desc, /* source Blob descriptor */

sizeof(bpb), /* length of BPB buffer */

bpb, /* buffer into which the generated BPB will be stored

*/

&actual_bpb_length /* actual length of generated BPB */

);

GENERATING A BLOB PARAMETER BUFFER DIRECTLY

It is possible to generate a BPB directly.

CHAPTER 7 WORKING WITH BLOB DATA

142 INTERBASE 5

A BPB consists of the following parts:

1. A byte specifying the version of the parameter buffer, always the
compile-time constant, isc_bpb_version1.

2. A contiguous series of one or more clusters of bytes, each describing a single
parameter.

Each cluster consists of the following parts:

1. A one-byte parameter type. There are compile-time constants defined for all
the parameter types (for example, isc_bpb_target_type).

2. A one-byte number specifying the number of bytes that follow in the
remainder of the cluster.

3. A variable number of bytes, whose interpretation depends on the parameter
type.

Note All numbers in the Blob parameter buffer must be represented in a generic format,
with the least significant byte first, and the most significant byte last. Signed numbers
should have the sign in the last byte. The API function isc_vax_integer() can be used to
reverse the byte order of a number. For more information about isc_vax_integer(), see
“isc_vax_integer()” on page 332.

The following table lists the parameter types and their meaning:

The BPB must contain isc_bpb_version1 at the beginning, and must contain clusters
specifying the source and target subtypes. Character set clusters are optional. If the source
and target subtypes are both 1 (TEXT), and the BPB also specifies different source and
target character sets, then when data is read from or written to the Blob associated with
the BPB, InterBase will automatically convert each character from the source to the target
character set.

The following is an example of directly creating a BPB for a filter whose source subtype
is –4 and target subtype is 1 (TEXT):

Parameter type Description

isc_bpb_target_type Target subtype

isc_bpb_source_type Source subtype

isc_bpb_target_interp Target character set

isc_bpb_source_interp Source character set

TABLE 7.6 Blob parameter buffer parameter types

FILTERING BLOB DATA

API GUIDE 143

char bpb[] = {

isc_bpb_version1,

isc_bpb_target_type,

1, /* # bytes that follow which specify target subtype */

1, /* target subtype (TEXT) */

isc_bpb_source_type,

1, /* # bytes that follow which specify source subtype */

–4, /* source subtype*/

};

Of course, if you do not know the source and target subtypes until run time, you can
assign those values in the appropriate BPB locations at run time.

4 Requesting filter usage
You request usage of a filter when opening or creating a Blob for read or write access. In
the call to isc_open_blob2() or isc_create_blob2(), pass the BPB, whose information InterBase
will use to determine which filter should be called.

The following example illustrates creating and opening a Blob for write access. For
further information about writing data to a Blob and updating a Blob column of a table
row to refer to the new Blob, see “Writing data to a Blob” on page 122.

Opening a Blob for read access requires additional steps to select the appropriate Blob
to be opened. For more information, see “Reading data from a Blob” on page 117.

isc_blob_handle blob_handle; /* declare at beginning */

ISC_QUAD blob_id; /* declare at beginning */

. . .

isc_create_blob2(

status_vector,

&db_handle,

&tr_handle,

&blob_handle, /* to be filled in by this function */

&blob_id, /* to be filled in by this function */

actual_bpb_length, /* length of BPB data */

&bpb /* Blob parameter buffer */

)

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector);

return(1);

}

144 INTERBASE 5

API GUIDE 145

CHAPTER

8
Chapter 8Working with Array Data

This chapter describes arrays of datatypes and how to work with them using API
functions. It shows how to set up an array descriptor specifying the array or array subset
to be retrieved or written to, and how to use the two API functions that control access to
arrays.

CHAPTER 8 WORKING WITH ARRAY DATA

146 INTERBASE 5

The following table summarizes the API functions for working with arrays. First the
functions that can be used to populate an array descriptor are listed, followed by the
functions for accessing array data.

Introduction to arrays
InterBase supports arrays of most datatypes. Using an array enables multiple data items
to be stored in a single column. InterBase can treat an array as a single unit, or as a series
of separate units, called slices. Using an array is appropriate when:

g The data items naturally form a set of the same datatype.

g The entire set of data items in a single database column must be represented and
controlled as a unit, as opposed to storing each item in a separate column.

g Each item must also be identified and accessed individually.

The data items in an array are called array elements. An array can contain elements of
any InterBase datatype except Blob, and cannot be an array of arrays. All of the elements
of a particular array are of the same datatype.

InterBase supports multi-dimensional arrays, arrays with 1 to 16 dimensions.
Multi-dimensional arrays are stored in row-major order.

Array dimensions have a specific range of upper and lower boundaries, called subscripts.
The array subscripts are defined when an array column is created. For information about
creating an array, see the Language Reference.

Function Purpose

isc_array_lookup_desc() Looks up and stores into an array descriptor the datatype, length,
scale, and dimensions for all elements in the specified array column
of the specified table

isc_array_lookup_bounds() Performs the same actions as the function,
isc_array_lookup_desc(), but also looks up and stores the upper
and lower bounds of each dimension

isc_array_set_desc() Initializes an array descriptor from parameters passed to it

isc_array_get_slice() Retrieves data from an array

isc_array_put_slice() Writes data to an array

TABLE 8.1 API array access functions

INTRODUCTION TO ARRAYS

API GUIDE 147

Array database storage
InterBase does not store array data directly in the array field of a table record. Instead, it
stores an array ID there. The array ID is a unique numeric value that references the array
data, which is stored elsewhere in the database.

Array descriptors
An array descriptor describes an array or array subset to be retrieved or written to the
ISC_ARRAY_DESC structure. ISC_ARRAY_DESC is defined in the InterBase ibase.h
header file as follows:

typedef struct {

unsigned char array_desc_dtype; /* Datatype */

char array_desc_scale; /* Scale for numeric datatypes */

unsigned short array_desc_length;

/* Length in bytes of each array element */

char array_desc_field_name [32]; /* Column name */

char array_desc_relation_name [32]; /* Table name */

short array_desc_dimensions; /* Number of array dimensions */

short array_desc_flags;

/* Specifies whether array is to be accessed in row-major or

column-major order */

ISC_ARRAY_BOUND array_desc_bounds [16];

/* Lower and upper bounds for each dimension */

} ISC_ARRAY_DESC;

ISC_ARRAY_BOUND is defined as:

typedef struct {

short array_bound_lower; /* lower bound */

short array_bound_upper; /* upper bound */

} ISC_ARRAY_BOUND;

An array descriptor contains 16 ISC_ARRAY_BOUND structures, one for each possible
dimension. An array with n dimensions has upper and lower bounds set for the first n
ISC_ARRAY_BOUND structures. The number of actual array dimensions is specified in
the array_desc_dimensions field of the array descriptor.

When you retrieve data from an array, you supply an array descriptor defining the array
slice (entire array or subset of contiguous array elements) to be retrieved. Similarly, when
you write data to an array, you supply an array descriptor defining the array slice to be
written to.

CHAPTER 8 WORKING WITH ARRAY DATA

148 INTERBASE 5

Populating an array descriptor
There are four ways to populate an array descriptor:

g Call isc_array_lookup_desc(), which looks up (in the system metadata tables) and stores in
an array descriptor the datatype, length, scale, and dimensions for a specified array
column in a specified table. This function also stores the table and column name in the
descriptor, and initializes its array_desc_flags field to indicate that the array is to be
accessed in row-major order. For example,

isc_array_lookup_desc(

status_vector,

&db_handle, /* Set by isc_attach_database() */

&tr_handle, /* Set by isc_start_transaction() */

"PROJ_DEPT_BUDGET",/* table name */

"QUART_HEAD_CNT",/* array column name */

&desc /* descriptor to be filled in */

);

g Call isc_array_lookup_bounds(), which looks and functions the same as a call to
isc_array_lookup_desc(), except that the function isc_array_lookup_bounds() also looks up and
stores into the array descriptor the upper and lower bounds of each dimension.

g Call isc_array_set_desc(), which initializes the descriptor from parameters, rather than by
accessing the database metadata. For example,

short dtype = SQL_TEXT;

short len = 8;

short numdims = 2;

isc_array_set_desc(

status_vector,

"TABLE1", /* table name */

"CHAR_ARRAY", /* array column name */

&dtype, /* datatype of elements */

&len, /* length of each element */

&numdims, /* number of array dimensions */

&desc /* descriptor to be filled in */

);

g Setting the descriptor fields directly. An example of setting the array_desc_dimensions
field of the descriptor, desc, is:

desc.array_desc_dimensions = 2;

ACCESSING ARRAY DATA

API GUIDE 149

For complete syntax and information about isc_array_lookup_bounds(),
isc_array_lookup_desc(), and isc_array_set_desc(), see Chapter 12, “API Function
Reference.”

Accessing array data
InterBase supports the following operations on array data:

g Reading from an array or array slice.

g Writing to an array:

· Including a new array in a row to be inserted into a table.

· Replacing the array referenced by an array column of a row with a new array.

· Updating the array referenced by an array column of a row by modifying the array data
or a slice of the data.

g Deleting an array.

Dynamic SQL (DSQL) API functions and the XSQLDA data structure are needed to
execute SELECT, INSERT, and UPDATE statements required to select, insert, or update
relevant array data. The following sections include descriptions of the DSQL
programming methods required to execute the sample statements provided.

For more information about DSQL and the XSQLDA, see Chapter 6, “Working with
Dynamic SQL.”

Note The following array operations are not supported:

g Referencing array dimensions dynamically in DSQL.

g Setting individual array elements to NULL.

g Using aggregate functions, such as MIN() and MAX(), with arrays.

g Referencing arrays in the GROUP BY clause of a SELECT.

g Creating views that select from array slices.

Reading data from an array
There are seven steps required for reading data from an array or slice of an array:

CHAPTER 8 WORKING WITH ARRAY DATA

150 INTERBASE 5

1. Create a SELECT statement that specifies selection of the array column (and
any other columns desired) in the rows of interest.

2. Prepare an output XSQLDA structure to hold the column data for each row
that is fetched.

3. Prepare the SELECT statement for execution.

4. Execute the statement.

5. Populate an array descriptor with information describing the array or array
slice to be retrieved.

6. Fetch the selected rows one by one.

7. Read and process the array data from each row.

4 Creating the SELECT statement
Elicit a statement string from the user or create one that consists of the SQL query that
will select rows containing the array data of interest. In your query, specify the array
column name and the names of any other columns containing data you are interested in.
For example, the following creates an SQL query statement string that selects an array
column named QUART_HEAD_CNT and another column named DEPT_NO from the
table, PROJ_DEPT_BUDGET:

char *sel_str =

"SELECT DEPT_NO, QUART_HEAD_CNT FROM PROJ_DEPT_BUDGET \

WHERE year = 1994 AND PROJ_ID = ’VBASE’";

4 Preparing the output XSQLDA

Most queries return one or more rows of data, referred to as a select-list. An output
XSQLDA must be created to store the column data for each row that is fetched. For an
array column, the column data is an internal array identifier (array ID) that is needed to
access the actual data. To prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XSQLDA. For example, the following
declaration creates an XSQLDA called out_sqlda:

XSQLDA *out_sqlda;

2. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
XSQLDA must contain one XSQLVAR substructure for each column to be
fetched. The following statement allocates storage for an output XSQLDA
(out_sqlda) with two XSQLVAR substructures:

out_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(2));

ACCESSING ARRAY DATA

API GUIDE 151

3. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the sqln
field of the XSQLDA to indicate the number of XSQLVAR substructures
allocated:

out_sqlda->version = SQLDA_VERSION1;

out_sqlda->sqln = 2;

4 Preparing the SELECT statement for execution
After an XSQLDA is created for holding the column data for each selected row, the query
statement string can be prepared for execution. Follow these steps:

1. Declare and initialize an SQL statement handle, then allocate it with
isc_dsql_allocate_statement():

isc_stmt_handle stmt; /* Declare a statement handle. */

stmt = NULL; /* Set handle to NULL before allocation. */

isc_dsql_allocate_statement(status_vector, &db_handle, &stmt);

2. Ready the statement string for execution with isc_dsql_prepare(). This checks
the string (sel_str) for syntax errors, parses it into a format that can be
efficiently executed, and sets the statement handle (stmt) to refer to this
parsed format. The statement handle is used in a later call to isc_dsql_execute().

If isc_dsql_prepare() is passed a pointer to the output XSQLDA, as in the following
example, it will fill in most fields of the XSQLDA and all its XSQLVAR substructures
with information such as the datatype, length, and name of the corresponding
columns in the statement.

A sample call to isc_dsql_prepare() is:

isc_dsql_prepare(

status_vector,

&trans, /* Set by previous isc_start_transaction() call. */

&stmt, /* Statement handle set by this function call. */

0, /* Specifies statement string is null-terminated. */

sel_str, /* Statement string. */

1, /* XSQLDA version number. */

out_sqlda /* XSQLDA for storing column data. */

);

3. Set up an XSQLVAR structure for each column. Setting up an XSQLVAR
structure involves the following steps:

For columns whose types are known at compile time:

- Specify the column’s datatype (if it was not set by isc_dsql_prepare(), as previously
described).

CHAPTER 8 WORKING WITH ARRAY DATA

152 INTERBASE 5

- Point the sqldata field of the XSQLVAR to an appropriate local variable.

For columns whose types are not known until run time:

- Coerce the item’s datatype (optional); for example, from SQL_VARYING to
SQL_TEXT.

- Dynamically allocate local storage for the data pointed to by the sqldata field of the
XSQLVAR.

For both:

Provide a NULL value indicator for the parameter.

· Data retrieval for array (and Blob) columns is different from other types of columns, so
the XSQLVAR fields must be set differently. For non-array (and non-Blob) columns,
isc_dsql_prepare() sets each XSQLVAR sqltype field to the appropriate field type, and the
data retrieved when a select list row’s data is fetched is placed into the sqldata space
allocated for the column. For array columns, the type is set to SQL_ARRAY (or
SQL_ARRAY + 1 if the array column is allowed to be NULL). InterBase stores the internal
array identifier (array ID), not the array data, in the sqldata space when a row’s data is
fetched, so you must point sqldata to an area the size of an array ID. To see how to
retrieve the actual array or array slice data once you have an array ID, see “Reading
and processing the array data” on page 154.

· The following code example illustrates the assignments for array and non-array
columns whose types are known at compile time. For more information about DSQL
and the XSQLDA, and working with columns whose types are unknown until run time,
see Chapter 6, “Working with Dynamic SQL.”

ISC_QUAD array_id = 0L;

char dept_no[6];

short flag0, flag1;

out_sqlda->sqlvar[0].sqldata = (char *) dept_no;

out_sqlda->sqlvar[0].sqltype = SQL_TEXT + 1;

out_sqlda->sqlvar[0].sqlind = &flag0;

out_sqlda->sqlvar[1].sqldata = (char *) &array_id;

out_sqlda->sqlvar[1].sqltype = SQL_ARRAY + 1;

out_sqlda->sqlvar[1].sqlind = &flag1;

4 Executing the statement
Once the query statement string is prepared, it can be executed:

isc_dsql_execute(

status_vector,

&trans, /* set by previous isc_start_transaction() call */

&stmt, /* set above by isc_dsql_prepare() */

ACCESSING ARRAY DATA

API GUIDE 153

1, /* XSQLDA version number */

NULL /* NULL since stmt doesn’t have input values */

);

This statement creates a select-list, the rows returned by execution of the
statement.

4 Populating the array descriptor
To prepare an array descriptor that describes the array or array slice to be read, follow
these steps:

1. Create the array descriptor:

ISC_ARRAY_DESC desc;

2. Fill in the descriptor with information regarding the array column from
which data will be read. Do this either by calling one of the functions
isc_array_lookup_bounds(), isc_array_lookup_desc(), or isc_array_set_desc(), or by
directly filling in the descriptor. For information on the contents of array
descriptors, and the usage of these functions, see “Array descriptors” on
page 147.

Ensure the descriptor boundaries are set to those of the slice to be read.

If you want to retrieve all the array data (that is, not just a smaller slice), set the
boundaries to the full boundaries as initially declared for the array column. This is
guaranteed to be the case if you fill in the descriptor by calling
isc_array_lookup_bounds(), as in:

ISC_ARRAY_DESC desc;

isc_array_lookup_bounds(

status_vector,

&db_handle,

&trans,

"PROJ_DEPT_BUDGET",/* table name */

"QUART_HEAD_CNT",/* array column name */

&desc);

Suppose the array column, QUART_HEAD_CNT, is a one-dimensional array consisting
of four elements, and it was declared to have a lower subscript bound of 1 and an
upper bound of 4 when it was created. Then after the above call to
isc_array_lookup_bounds(), the array descriptor fields for the boundaries contain the
following information:

desc.array_desc_bounds[0].array_bound_lower == 1

desc.array_desc_bounds[0].array_bound_upper == 4

CHAPTER 8 WORKING WITH ARRAY DATA

154 INTERBASE 5

If you want to read just a slice of the array, then modify the upper and/or lower
bounds appropriately. For example, if you just want to read the first two elements of
the array, then modify the upper bound to the value 2, as in:

desc.array_desc_bounds[0].array_bound_upper = 2

4 Fetching selected rows
A looping construct is used to fetch (into the output XSQLDA) the column data for a
single row at a time from the select-list and to process each row before the next row is
fetched. Each execution of isc_dsql_fetch() fetches the column data for the next row into
the corresponding XSQLVAR structures of out_sqlda. For the array column, the array ID,
not the actual array data, is fetched.

ISC_STATUS fetch_stat;

long SQLCODE;

. . .

while ((fetch_stat = j

isc_dsql_fetch(status_vector, &stmt, 1, out_sqlda))

== 0)

{

/* Read and process the array data */

}

if (fetch_stat != 100L)

{

/* isc_dsql_fetch returns 100 if no more rows remain to be

retrieved */

SQLCODE = isc_sqlcode(status_vector);

isc_print_sqlerror(SQLCODE, status_vector);

return(1);

}

4 Reading and processing the array data
To read and process the array or array slice data:

1. Create a buffer for holding the array data to be read. Make it large enough to
hold all the elements in the slice to be read (which could be the entire array).
For example, the following declares an array buffer large enough to hold 4
long elements:

long hcnt[4];

2. Declare a short variable for specifying the size of the array buffer:

short len;

ACCESSING ARRAY DATA

API GUIDE 155

3. Set the variable to the buffer length:

len = sizeof(hcnt);

4. Read the array or array slice data into the buffer by calling isc_array_get_slice().
Process the data read. In the following example, the array is read into the
hcnt array buffer, and “processing” consists of printing the data:

isc_array_get_slice(

status_vector,

&db_handle,/* set by isc_attach_database()*/

&trans, /* set by isc_start_transaction() */

&array_id, /* array ID put into out_sqlda by isc_dsql_fetch()*/

&desc, /* array descriptor specifying slice to be read */

(void *) hcnt,/* buffer into which data will be read */

(long *) &len/* length of buffer */

);

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector);

return(1);

}

/* Make dept_no a null-terminated string */

dept_no[out_sqlda->sqlvar[0].sqllen] = ’\0’;

printf("Department #: %s\n\n", dept_no);

printf("\tCurrent head counts: %ld %ld %ld %ld\n",

hcnt[0], hcnt[1], hcnt[2], hcnt[3]);

Writing data to an array
isc_array_put_slice() is called to write data to an array or array slice. Use it to:

g Include a new array in a row to be inserted into a table.

g Replace the current contents of an array column of a row with a new array.

g Update the array referenced by an array column of a row by modifying the array data or
a slice of the data.

CHAPTER 8 WORKING WITH ARRAY DATA

156 INTERBASE 5

The entry in an array column of a row does not actually contain array data. Rather, it has
an array ID referring to the data, which is stored elsewhere. So, to set or modify an array
column, you need to set or change the array ID stored in it. If an array column contains
an array ID, and you modify the column to refer to a different array (or to contain NULL),
the array referenced by the previously stored array ID will be deleted during the next
garbage collection.

The following steps are required to insert, replace, or update array data:

1. Prepare an array descriptor with information describing the array (or slice)
to be written to.

2. Prepare an array buffer with the data to be written.

3. Prepare an appropriate DSQL statement. This will be an INSERT statement if
you are inserting a new row into a table, or an UPDATE statement for
modifying an existing row.

4. Call isc_array_put_slice() to create a new array (possibly copying an existing
one), and to write the data from the array buffer into the array or array slice.

5. Associate the new array with an array column of the table row being modified
or inserted by executing the UPDATE or INSERT statement. This sets the array
column to contain the array ID of the new array.

4 Preparing the array descriptor
To prepare an array descriptor that specifies the array or array slice to be written to,
follow these steps:

1. Create the array descriptor:

ISC_ARRAY_DESC desc;

2. Fill in the descriptor with information regarding the array column to which
data will be written. Do this either by calling one of the functions
isc_array_lookup_bounds(), isc_array_lookup_desc(), or isc_array_set_desc(), or by
directly filling in the descriptor. For information on the contents of array
descriptors, and the usage of these functions, see “Array descriptors” on
page 147.

Ensure the descriptor boundaries are set to those of the slice to be written to.

If you want to write to the entire array (i.e., not just a smaller slice), set the boundaries
to the full boundaries as initially declared for the array column. This is guaranteed to
be the case if you fill in the descriptor by calling isc_array_lookup_bounds(), as in:

isc_array_lookup_bounds(

status_vector,

ACCESSING ARRAY DATA

API GUIDE 157

db_handle,

&trans,

"PROJ_DEPT_BUDGET",/* table name */

"QUART_HEAD_CNT",/* array column name */

&desc);

Suppose the array column, QUART_HEAD_CNT, is a one-dimensional array consisting
of four elements, and it was declared to have a lower subscript bound of 1 and an
upper bound of 4 when it was created. Then after a call to isc_array_lookup_bounds(), the
array descriptor fields for the boundaries contain the following information:

desc.array_desc_bounds[0].array_bound_lower == 1

desc.array_desc_bounds[0].array_bound_upper == 4

If you just want to write to (or modify) a slice of the array, then change the upper and
lower bound appropriately. For example, if you just want to write to the first two
elements of the array, then modify the upper bound to the value 2, as in:

desc.array_desc_bounds[0].array_bound_upper == 2

4 Preparing the array buffer with data
Create an array buffer to hold the data to be written to the array. Make it large enough to
hold all the elements in the slice to be written (which could be the entire array). For
example, the following declares an array buffer large enough to hold 4 long elements:

long hcnt[4];

1. Create a variable specifying the length of the array buffer:

short len;

len = sizeof(hcnt);

2. Fill the array buffer with the data to be written.

If you are creating a new array, then fill the buffer with data. For
example,

hcnt[0] = 4;

hcnt[1] = 5;

hcnt[2] = 6;

hcnt[3] = 6;

To modify existing array data instead of creating a new one, then perform all the steps
listed in “Reading data from an array” on page 149 to read the existing array data
into the array buffer. Modify the data in the buffer.

4 Preparing the UPDATE or INSERT statement
To prepare an UPDATE or INSERT statement for execution, follow these steps:

CHAPTER 8 WORKING WITH ARRAY DATA

158 INTERBASE 5

1. Elicit an UPDATE or INSERT statement string from the user or create one for
inserting a new row or updating the row(s) containing the array column(s)
of interest. For example, the following statement is for updating the array
column named QUART_HEAD_CNT in the specified row of the table,
PROJ_DEPT_BUDGET. The department number and quarterly headcounts
are assumed to be supplied at run time:

char *upd_str =

"UPDATE PROJ_DEPT_BUDGET SET QUART_HEAD_CNT = ? WHERE \

YEAR = 1994 AND PROJ_ID = "MKTPR" AND DEPT_NO = ?";

As an example of an INSERT statement, the following is for inserting a new row into
the PROJ_DEPT_BUDGET table, with column data supplied at run time:

char *upd_str =

"INSERT INTO PROJ_DEPT_BUDGET (YEAR, PROJ_ID, DEPT_NO, \

QUART_HEAD_CNT) VALUES (?, ?, ?, ?)";

The remaining steps refer only to UPDATE statements, but the actions apply to
INSERT statements as well.

2. Declare a variable to hold the input XSQLDA needed to supply parameter
values to the UPDATE statement at run time. For example, the following
declaration creates an XSQLDA called in_sqlda:

XSQLDA *in_sqlda;

3. Allocate memory for the input XSQLDA using the XSQLDA_LENGTH macro.
The XSQLDA must contain one XSQLVAR substructure for each parameter to
be passed to the UPDATE statement. The following statement allocates
storage for an input XSQLDA (in_sqlda) with two XSQLVAR substructures:

in_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(2));

4. Set the Version field of the XSQLDA to SQLDA_VERSION1, and set the Sqln
field to indicate the number of XSQLVAR structures allocated:

in_sqlda->version = SQLDA_VERSION1;

in_sqlda->sqln = 2;

5. Set up the XSQLVAR structure in the XSQLDA for each parameter to be
passed. Setting up an XSQLVAR structure involves the following steps:

- Specify the item’s datatype.

- For parameters whose types are known at compile time, point the Ssqldata field of
the XSQLVAR to an appropriate local variable that will contain the data to be passed.

ACCESSING ARRAY DATA

API GUIDE 159

- For parameters whose types are not known until run time, allocate local storage for
the data pointed to by the Sqldata field of the XSQLVAR.

- Specify the number of bytes of data.

Data storage for array (and Blob) columns is different from other types of columns,
so the XSQLVAR fields must be set differently. For non-array (and non-Blob) columns,
input parameter data comes from the space pointed to by Sqldata. For array columns,
set the type to SQL_ARRAY (or SQL_ARRAY + 1 if the array column is allowed to be
NULL). The application must store space for the internal array identifier, not the array
data, in the Sqldata space. See the following sections to create or modify an array,
store its array ID in the Sqldata space, and then associate the actual array data with
the column.

The following code example illustrates the assignments for one TEXT column and one
array column, where the column types are known at compile time.

#define NUMLEN 4

char dept_no[NUMLEN + 1];

ISC_QUAD array_id;

in_sqlda->sqlvar[0].sqldata = &array_id;

in_sqlda->sqlvar[0].sqltype = SQL_ARRAY + 1;

in_sqlda->sqlvar[0].sqllen = sizeof(ISC_QUAD);

in_sqlda->sqlvar[1].sqldata = dept_no;

in_sqlda->sqlvar[1].sqltype = SQL_TEXT;

in_sqlda->sqlvar[1].sqllen = 4;

The dept_no variable should be assigned a value at run time (unless the value is
known at compile time). The array_id variable should be set to refer to the newly
created array, as described in the following sections.

For examples of handling data whose types are not known until run time, see Chapter
6, “Working with Dynamic SQL.”

4 Calling isc_array_put_slice()
The following steps are required to store the data into an array or array slice:

1. Declare an array ID:

ISC_QUAD array_id; /* Declare an array ID. */

2. Initialize the array ID. If you are creating a new array to be inserted into a
new row, or to replace an existing array, then simply initialize the array ID to
NULL:

array_id = NULL;/* Set handle to NULL before using it */

CHAPTER 8 WORKING WITH ARRAY DATA

160 INTERBASE 5

If you are modifying an existing array, then follow the steps listed under “Reading
Data from an Array” to read the existing array ID into array_id.

3. Call isc_array_put_slice(). In your call you pass the array ID (either the array ID
of an existing array, or NULL for a new array) in the array_id variable. You
also pass the buffer of data to be written and a descriptor specifying the array
slice to which the data belongs.

When isc_array_put_slice() is called with an array ID of an existing array, it creates a new
array with the same characteristics as the specified array, and copies the existing array
data to the new array. Then isc_array_put_slice() writes the data from the array buffer to
the new array (or slice of the array), per the bounds specified in the array descriptor,
and returns in the same array_id variable the array ID of the new array.

When isc_array_put_slice() is called with a NULL array ID, it creates a new empty array
with characteristics as declared for the array column whose name and table name are
specified in the array descriptor passed to isc_array_put_slice(). It then writes the data
from the array buffer to the new array (or slice of the array), and returns in the
array_id variable the array ID of the new array.

Note that in both cases, a new array is created, and its array ID is returned in the
array_id variable. The array is temporary until an UPDATE or INSERT statement is
executed to associate the array with a particular column of a particular row.

You can make a single call to isc_array_put_slice() to write all the data to the array. Or,
you may call isc_array_put_slice() multiple times to store data into various slices of the
array. In this case, each call to isc_array_put_slice() after the first call should pass the
array ID of the temporary array. When isc_array_put_slice() is called with the array ID of
a temporary array, it copies the specified data to the specified slice of the temporary
array, but does not create a new array.

The following is a sample call to isc_array_put_slice():

isc_array_put_slice(

status_vector,

&db_handle,

&trans,

&array_id,/* array ID (NULL, or existing array’s array ID) */

&desc, /* array descriptor describing where to write data */

hcnt, /* array buffer containing data to write to array */

&len /* length of array buffer */

);

This call creates a new array, copies the data in hcnt to the new array (or slice of the
array), assigns the array an array ID, and sets array_id to point to the array ID.

ACCESSING ARRAY DATA

API GUIDE 161

IMPORTANT array_id should be the variable pointed to by the Sqldata field of the UPDATE (or
INSERT) statement input parameter that specifies the array column to be updated. Thus,
when the INSERT or UPDATE statement is executed, this new array’s array ID will be
used to set or update the array column to refer to the new array.

4 Associating the new array with the array column
Execute the UPDATE statement to associate the new array with the array column in the
row selected by the statement:

isc_dsql_execute_immediate(

status_vector,

&db_handle,

&trans,

0, /* indicates string to execute is null-terminated */

upd_str, /* UPDATE statement string to be executed */

1, /* XSQLDA version number */

in_sqlda /* XSQLDA supplying parameters to UPDATE statement */

);

This sets the array column in the row specified in the UPDATE statement to contain the
array ID of the new array. The array ID comes from the array_id variable pointed to by
the in_sqlda parameter corresponding to the array column.

If the array column in the specified row contains the array ID of a different array before
the UPDATE statement is executed, then the column is modified to contain the new array
ID, and the array referenced by the previously stored array ID will be deleted during the
next garbage collection.

Deleting an array
There are three ways to delete an array:

1. Delete the row containing the array. You can use DSQL to execute a DELETE
statement.

2. Replace the array with a different one, as described above. If an array column
contains an array ID, and you modify the column to refer to a different array,
the array referenced by the previously stored array ID will be deleted during
the next garbage collection.

3. Reset to NULL the column referring to the array. For example, use DSQL to
execute a statement like the following, where LANGUAGE_REQ is an array
column:

CHAPTER 8 WORKING WITH ARRAY DATA

162 INTERBASE 5

"UPDATE JOB SET LANGUAGE_REQ = NULL \

WHERE JOB_CODE = "SA12" AND JOB_GRADE = 10"

The array referenced by the previously stored array ID will be deleted during the next
garbage collection.

API GUIDE 163

CHAPTER

9
Chapter 9Working with Conversions

InterBase uses a proprietary format for internal storage of DATE data, but provides the
following API calls for translating to and from this format:

g isc_decode_date() to convert the InterBase internal date format to the C time structure

g isc_encode_date() to convert the C time structure to the internal InterBase date format

These calls merely translate DATE data between formats; they do not read or write DATE
data directly. DATE data is read from and written to the database using standard DSQL
syntax processed with the isc_dsql family of API calls.

InterBase also requires that numbers entered in database and transaction parameter
buffers be in a generic format, with the least significant byte last. Signed numbers require
the sign to be in the last byte. Systems that represent numbers with the most significant
byte last must use the isc_vax_integer() API function to reverse the byte order of numbers
entered in database parameter buffers (DPBs) and transaction parameter buffers (TPBs).
When numeric information is returned by information calls on these systems,
isc_vax_integer() must be used once again to reverse the byte ordering.

For more information about using DSQL to read and write data, see Chapter 6, “Working
with Dynamic SQL.”

CHAPTER 9 WORKING WITH CONVERSIONS

164 INTERBASE 5

Converting dates from InterBase to C format
To select a date from a table, and convert it to a form usable in a C language program,
follow these steps:

1. Create a host variable for a C time structure. Most C and C++ compilers
provide a typedef declaration, tm, for the C time structure in the time.h
header file. The following C code includes that header file, and declares a
variable of type tm:

#include <time.h>

#include "ibase.h"

. . .

struct tm hire_time;

. . .

Note To create host-language time structures in languages other than C and C++, see the
host-language reference manual.

2. Create a host variable of type ISC_QUAD. For example, the host-variable
declaration might look like this:

ISC_QUAD hire_date;

The ISC_QUAD structure is declared in ibase.h, but the programmer must declare
actual host-language variables of type ISC_QUAD.

3. Retrieve a date from a table into the ISC_QUAD variable.

4. Convert the ISC_QUAD variable into a numeric C format with the InterBase
function, isc_decode_date(). This function is also declared in ibase.h.
isc_decode_date() requires two parameters, the address of the ISC_QUAD
host-language variable, and the address of the tm host-language variable. For
example, the following code fragment coverts hire_date to hire_time:

isc_decode_date(&hire_date, &hire_time);

Converting dates from C to InterBase format
To insert a date in a table, it must be converted from the host-language format into
InterBase format, and then stored. To perform the conversion and insertion in a C
program, follow these steps:

REVERSING BYTE ORDER OF NUMBERS WITH ISC_VAX_INTEGER()

API GUIDE 165

1. Create a host variable for a C time structure. Most C and C++ compilers
provide a typedef declaration, tm, for the C time structure in the time.h
header file. The following C code includes that header file, and declares a tm
variable, hire_time:

#include <time.h>;

. . .

struct tm hire_time;

. . .

To create host-language time structures in languages other than C and C++, see the
host-language reference manual.

2. Create a host variable of type ISC_QUAD, for use by InterBase. For example,
the host-variable declaration might look like this:

ISC_QUAD mydate;

The ISC_QUAD structure is declared in ibase.h, but the programmer must declare
actual host-language variables of type ISC_QUAD.

3. Put date and time information into hire_time.

4. Use the InterBase isc_encode_date() function to convert the information in
hire_time into InterBase internal format and store that formatted information
in the ISC_QUAD host variable (hire_date in the example). This function is
also declared in ibase.h.

isc_encode_date() requires two parameters, the address of the C time structure, and the
address of the ISC_QUAD host-language variable. For example, the following code
converts hire_time to hire_date:

isc_encode_date(&hire_time, &hire_date);

5. Insert the date into a table.

Reversing byte order of numbers with isc_vax_integer()
InterBase expects that numbers entered in database and transaction parameter buffers be
in a generic format, with the least significant byte last. Signed numbers require the sign
to be in the last byte. Systems that represent numbers with the most significant byte last
must use the isc_vax_integer() API function to reverse the byte order of numbers entered in
DPBs and TPBs. When numeric information is returned by information calls on these
systems, isc_vax_integer() must be used once again to reverse the byte ordering. The syntax
for isc_vax_integer() is:

ISC_LONG isc_vax_integer(char *buffer, short length);

CHAPTER 9 WORKING WITH CONVERSIONS

166 INTERBASE 5

buffer is a char pointer to the integer to convert, and length is the size, in bytes, of the
integer. Valid lengths are 1 (short), 2 (int), and 4(long). The following code reverses the
4-byte value in a result buffer.

#include "ibase.h"

. . .

for(p = res_buffer; *p != isc_info_end;)

{

p++;

length = isc_vax_integer(p, 2);

}

API GUIDE 167

CHAPTER

10
Chapter 10Handling Error Conditions

This chapter describes how to set up an error status vector where InterBase can store
run-time error information, and how to use API functions to handle and report errors.

The following table summarizes the API functions for handling errors:

Function Purpose

isc_interprete() Capture InterBase error messages to a buffer

isc_print_sqlerror() Display an SQL error message

isc_print_status() Display InterBase error messages

isc_sqlcode() Set the value of SQLCODE

isc_sql_interprete() Capture an SQL error message to a buffer

TABLE 10.1 Error-handling functions

CHAPTER 10 HANDLING ERROR CONDITIONS

168 INTERBASE 5

Setting up an error status vector
Most API functions return status information that indicates success or failure. The
information returned is derived from the second array element of the error status vector,
where InterBase reports error conditions. The error status vector is declared in
applications as an array of 20 long integers, using the following syntax:

#include <ibase.h>

. . .

ISC_STATUS status_vector[20];

ISC_STATUS is a #define in ibase.h provided for programing convenience and platform
independence.

Using information in the status vector
Whether or not an error occurs during the execution of an API call, InterBase loads the
error status vector with status information. Information consists of one or more InterBase
error codes, and error information that can be used to build an error message honed to
a specific error.

An application can check the status vector after the execution of most API calls to
determine their success or failure. If an error condition is reported, applications can:

g Display InterBase error messages using isc_print_status().

g Set an SQLCODE value corresponding to an InterBase error using isc_sqlcode(), and display
the SQLCODE and an SQL error message using isc_print_sqlerror().

g Build individual InterBase error messages in a buffer with isc_interprete(). The buffer must
be provided by the application. Using a buffer enables an application to perform
additional message processing (for example, storing messages in an error log file). This
ability is especially useful on windowing systems that do not permit direct screen writes.

g Capture an SQL error message in a buffer with isc_sql_interprete(). The buffer must be
provided by the application.

g Parse for and react to specific InterBase error codes in the status vector.

USING INFORMATION IN THE STATUS VECTOR

API GUIDE 169

Checking the status vector for errors
API functions that return information in the status vector are declared in ibase.h as
returning an ISC_STATUS pointer. For example, the function prototype for
isc_prepare_transaction() is declared as:

ISC_STATUS ISC_EXPORT isc_prepare_transaction(

ISC_STATUS ISC_FAR *,

isc_tr_handle ISC_FAR *);

To check the status vector for error conditions after the execution of a function, examine
the first element of the status vector to see if it is set to 1, and if so, examine the second
element to see if it is not 0. A nonzero value in the second element indicates an error
condition. The following C code fragment illustrates how to check the status vector for
an error condition:

#include <ibase.h>

. . .

ISC_STATUS status_vector[20];

. . .

/* Assume an API call returning status information is called here. */

if (status_vector[0] == 1 && status_vector[1] > 0)

{

/* Handle error condition here. */

;

}

If an error condition is detected, you can use API functions in an error-handling routine
to display error messages, capture the error messages in a buffer, or parse the status
vector for particular error codes.

Display or capture of error messages is only one part of an error-handling routine.
Usually, these routines also roll back transactions, and sometimes they can retry failed
operations.

Displaying InterBase error messages
Use isc_print_status() to display InterBase error messages on the screen. This function
parses the status vector to build all available error messages, then uses the C printf()
function to write the messages to the display. isc_print_status() requires one parameter, a
pointer to a status vector containing error information. For example, the following code
fragment calls isc_print_status() and rolls back a transaction on error:

CHAPTER 10 HANDLING ERROR CONDITIONS

170 INTERBASE 5

#include <ibase.h>

. . .

ISC_STATUS status_vector[20];

isc_tr_handle trans;

. . .

trans = 0L;

. . .

/* Assume a transaction, trans, is started here. */

/* Assume an API call returning status information is called here. */

if (status_vector[0] == 1 && status_vector[1] > 0)

{

isc_print_status(status_vector);

isc_rollback_transaction(status_vector, &trans);

}

IMPORTANT On windowing systems that do not permit direct screen writes with printf(), use
isc_interprete() to capture error messages to a buffer.

TIP For applications that use the dynamic SQL (DSQL) API functions, errors should be
displayed using SQL conventions. Use isc_sqlcode() and isc_print_sqlerror() instead of
isc_print_status().

Capturing InterBase error messages
Use isc_interprete() to build an error message from information in the status vector and
store it in an application-defined buffer where it can be further manipulated. Capturing
messages in a buffer is useful when applications:

g Run under windowing systems that do not permit direct screen writes.

g Require more control over message display than is possible with isc_print_status().

g Store a record of all error messages in a log file.

g Manipulate or format error messages for display or pass them to a windowing system’s
display routines.

isc_interprete() retrieves and formats a single error message each time it is called. When an
error occurs, the status vector usually contains more than one error message. To retrieve
all relevant error messages, you must make repeated calls to isc_interprete().

USING INFORMATION IN THE STATUS VECTOR

API GUIDE 171

Given both the location of a buffer, and the address of the status vector, isc_interprete()
builds an error message from the information in the status vector, puts the formatted
string in the buffer where an application can manipulate it, and advances the status
vector pointer to the start of the next cluster of error information. isc_interprete() requires
two parameters, the address of an application buffer to hold formatted message output,
and a pointer to the status vector array.

IMPORTANT Never pass the status vector array directly to isc_interprete(). Each time it is called,
isc_interprete() advances the pointer to the status vector to the next element containing
new message information. Before calling isc_interprete(), be sure to set the pointer to the
starting address of the status vector.

The following code demonstrates an error-handling routine that makes repeated calls to
isc_interprete() to retrieve error messages from the status vector in a buffer, one at a time,
so they can be written to a log file:

#include <ibase.h>

. . .

ISC_STATUS status_vector[20];

isc_tr_handle trans;

long *pvector;

char msg[512];

FILE *efile; /* Code fragment assumes pointer to an open file. */

trans = 0L;

. . .

/* Error-handling routine starts here. */

/* Always set pvector to point to start of status_vector. */

pvector = status_vector;

/* Retrieve first message. */

isc_interprete(msg, &pvector);

/* Write first message from buffer to log file. */

fprintf(efile, "%s\n", msg);

msg[0] = ’-’; /* Append leading hyphen to secondary messages. */

/* Look for more messages and handle in a loop. */

while(isc_interprete(msg + 1, &pvector)) /* More? */

fprintf(efile, "%s\n", msg); /* If so, write it to the log. */

fclose(efile); /* All done, so close the log file. */

isc_rollback(status_vector, &trans);

return(1);

. . .

Note This code fragment assumes that the log file is properly declared and opened
elsewhere in the application before control is passed to this error handler.

CHAPTER 10 HANDLING ERROR CONDITIONS

172 INTERBASE 5

TIP For applications that use the dynamic SQL (DSQL) API functions, errors should be
buffered using SQL conventions. Use isc_sqlcode() and isc_sql_interprete() instead of
isc_interprete().

Setting an SQLCODE value on error
For DSQL applications, error conditions should be cast in terms of SQL conventions. SQL
applications typically report errors through a variable, SQLCODE, declared by an
application. To translate an InterBase error code into SQLCODE format, use isc_sqlcode().
This function searches the error status vector for an InterBase error code that can be
translated into an SQL error code, and performs the translation. Once SQLCODE is set,
the other API functions for handling SQL errors, isc_print_sqlerror(), and isc_sql_interprete(),
can be called.

isc_sqlcode() requires one parameter, a pointer to the status vector. It returns a long value,
containing an SQL error code. The following code illustrates the use of this function:

#include <ibase.h>;

. . .

long SQLCODE; /* Declare the SQL error code variable. */

ISC_STATUS status_vector[20];

. . .

if (status_vector[0] == 1 && status_vector[1] > 0)

{

SQLCODE = isc_sqlcode(status_vector);

isc_print_sqlerror(SQLCODE, status_vector)

. . .

}

If successful, isc_sqlcode() returns the first valid SQL error code decoded from the status
vector. If no valid SQL error code is found, isc_sqlcode() returns -999.

Displaying SQL error messages
API applications that provide a DSQL interface to end users should use isc_print_sqlerror()
to display SQL error codes and corresponding error messages on the screen. When passed
a variable, conventionally named SQLCODE, containing an SQL error code, and a pointer
to the status vector, isc_print_sqlerror() parses the status vector to build an SQL error
message, then uses the C printf() function to write the SQLCODE value and message to the
display. For example, the following code fragment calls isc_print_sqlerror() and rolls back a
transaction on error:

USING INFORMATION IN THE STATUS VECTOR

API GUIDE 173

#include <ibase.h>

. . .

ISC_STATUS status_vector[20];

isc_tr_handle trans;

long SQLCODE;

. . .

trans = 0L;

. . .

/* Assume a transaction, trans, is started here. */

/* Assume an API call returning status information is called here. */

if (status_vector[0] == 1 && status_vector[1] > 0)

{

SQLCODE = isc_sqlcode(status_vector);

isc_print_sqlerror(SQLCODE, status_vector);

isc_rollback_transaction(status_vector, &trans);

}

IMPORTANT On windowing systems that do not permit direct screen writes with printf(), use
isc_sql_interprete() to capture error messages to a buffer.

Capturing SQL error messages
Use isc_sql_interprete() to build an SQL error message based on a specific SQL error code
and store it in a buffer defined by an application. Capturing messages in a buffer is useful
when applications:

g Run under windowing systems that do not permit direct screen writes.

g Store a record of all error messages in a log file.

g Manipulate or format error messages for display or pass them to a windowing system’s
display routines.

isc_sql_interprete() requires three parameters: a valid SQL error code, usually passed as a
variable named SQLCODE, a buffer where the SQL message should be stored, and the size
of the buffer. The following code illustrates how this function might be called to build a
message string and store it in a log file:

#include <ibase.h>

. . .

ISC_STATUS status_vector[20];

isc_tr_handle trans;

long SQLCODE;

char msg[512];

CHAPTER 10 HANDLING ERROR CONDITIONS

174 INTERBASE 5

FILE *efile; /* Code fragment assumes pointer to an open file. */

trans = 0L;

. . .

/* Assume a transaction, trans, is started here. */

/* Assume an API call returning status information is called here. */

. . .

/* Error-handling routine starts here. */

if (status_vector[0] == 1 && status_vector[1] > 0)

{

SQLCODE = isc_sqlcode(status_vector);

isc_sql_interprete(SQLCODE, msg, 512);

fprintf(efile, "%s\n", msg);

isc_rollback_transaction(status_vector, &trans);

return(1);

}

Note This code fragment assumes that the log file is properly declared and opened
elsewhere in the application before control is passed to this error handler.

Parsing the status vector
InterBase stores error information in the status vector in clusters of two or three longs.
The first cluster in the status vector always indicates the primary cause of the error.
Subsequent clusters may contain supporting information about the error, for example,
strings or numbers for display in an associated error message. The actual number of
clusters used to report supporting information varies from error to error.

In many cases, additional errors may be reported in the status vector. Additional errors
are reported immediately following the first error and its supporting information, if any.
The first cluster for each additional error message identifies the error. Subsequent clusters
may contain supporting information about the error.

4 How the status vector is parsed
The InterBase error-handling routines, isc_print_status() and isc_interprete(), use routines
which automatically parse error message information in the status vector without
requiring you to know about its structure. If you plan to write your own routines to read
and react to the contents of the status vector, you need to know how to interpret it.

The key to parsing the status vector is to decipher the meaning of the first long in each
cluster, beginning with the first cluster in the vector.

USING INFORMATION IN THE STATUS VECTOR

API GUIDE 175

4 Meaning of the first long in a cluster
The first long in any cluster is a numeric descriptor. By examining the numeric descriptor
for any cluster, you can always determine the:

g Total number of longs in the cluster.

g Kind of information reported in the remainder of the cluster.

g Starting location of the next cluster in the status vector.

Interpretation of 1st long in a cluster

Value
Longs in
cluster Meaning

0 — End of error information in the status vector

1 2 Second long is an InterBase error code

2 2 Second long is the address of string used as a replaceable parameter in a generic
InterBase error message

3 3 Second long is the length, in bytes, of a variable-length string provided by the
operating system (most often this string is a file name); third long is the address
of the string

4 2 Second long is a number used as a replaceable parameter in a generic InterBase
error message

5 2 Second long is the address of an error message string requiring no further
processing before display

6 2 Second long is a VAX/VMS error code

7 2 Second long is a Unix error code

8 2 Second long is an Apollo Domain error code

TABLE 10.2 Interpretation of status vector clusters

CHAPTER 10 HANDLING ERROR CONDITIONS

176 INTERBASE 5

By including ibase.h at the start of your source code, you can use a series of #defines to
substitute for hard-coded numeric descriptors in the status vector parsing routines you
write. The advantages of using these #defines over hard-coding the descriptors are:

g Your code will be easier to read.

g Code maintenance will be easier should the numbering scheme for numeric descriptors
change in a future release of InterBase.

The following table lists the #define equivalents of each numeric descriptor:

9 2 Second long is an MS-DOS or OS/2 error code.

10 2 Second long is an HP MPE/XL error code.

11 2 Second long is an HP MPE/XL IPC error code.

12 2 Second long is a NeXT/Mach error code.

Note: As InterBase is adapted to run on other hardware and software platforms, additional numeric
descriptors for specific platform and operating system error codes may be added to the end of this list.

Value #define Value #define

0 isc_arg_end 8 isc_arg_domain

1 isc_arg_gds 9 isc_arg_dos

2 isc_arg_string 10 isc_arg_mpexl

3 isc_arg_cstring 11 isc_arg_mpexl_ipc

4 isc_arg_number 15 isc_arg_next_mach

5 isc_arg_interpreted 16 isc_arg_netware

6 isc_arg_vms 17 isc_arg_win32

7 isc_arg_unix

TABLE 10.3 #defines for status vector numeric descriptors

Interpretation of 1st long in a cluster

Value
Longs in
cluster Meaning

TABLE 10.2 Interpretation of status vector clusters (continued)

USING INFORMATION IN THE STATUS VECTOR

API GUIDE 177

For an example of code that uses these defines, see “Status vector parsing example”
on page 178.

4 Meaning of the second long in a cluster
The second long in a cluster is always one of five items:

g An InterBase error code (1st long = 1).

g A string address (1st long = 2 or 5).

g A string length (1st long = 3).

g A numeric value (1st long = 4).

g An operating system error code (1st long > 5).

INTERBASE ERROR CODES

InterBase error codes have two uses. First, they are used internally by InterBase functions
to build and display descriptive error message strings. For example, isc_interprete() calls
another function which uses the InterBase error code to retrieve a base error message
from which it builds an error message string you can display or store in a log file.

Secondly, when you write your own error-handling routine, you can examine the status
vector directly, trapping for and reacting to specific InterBase error codes.

When the second long of a cluster is an InterBase error code, then subsequent clusters
may contain additional parameters for the error message string associated with the error
code. For example, a generic InterBase error message may contain a replaceable string
parameter for the name of the table where an error occurs, or it may contain a
replaceable numeric parameter for the code of the trigger which trapped the error
condition.

If you write your own parsing routines, you may need to examine and use these
additional clusters of error information.

STRING ADDRESSES

String addresses point to error message text. When the first long in the cluster is 2
(isc_arg_string), the address pointed to often contains the name of the database, table,
or column affected by the error. In these cases, InterBase functions which build error
message strings replace a parameter in a generic InterBase error message with the string
pointed to by this address. Other times the address points to an error message hard-coded
in a database trigger.

CHAPTER 10 HANDLING ERROR CONDITIONS

178 INTERBASE 5

When the first long in the cluster is 5 (isc_arg_interpreted), the address points to a text
message which requires no further processing before retrieval. Sometimes this message
may be hard-coded in InterBase itself, and other times it may be a system-level error
message.

In either of these cases, InterBase functions such as isc_print_status() and isc_interprete() can
format and display the resulting error message for you.

STRING LENGTH INDICATORS

When the first long in a cluster is 3 (isc_arg_cstring), the numeric value in the second
long indicates the length, in bytes, of a message string whose address is stored in the third
long in the cluster. This string requires translation into a standard, null-terminated C
string before display.

NUMERIC VALUES

A numeric value has different meaning depending upon the value of the numeric
descriptor in the first long of a cluster. If the first long is 4 (isc_arg_number), a numeric
value is used by InterBase functions to replace numeric parameters in generic InterBase
error messages during message building. For instance, when an integrity error occurs,
InterBase stores the code of the trigger which detects the problem as a numeric value in
the status vector. When an InterBase function like isc_interprete() builds the error message
string for this error, it inserts the numeric value from the status vector into the generic
InterBase integrity error message string to make it more specific.

OPERATING SYSTEM ERROR CODES

If the first long in a cluster is greater than 5, the numeric value in the second long is an
error code specific to a particular platform or operating system. InterBase functions
should not be used to retrieve and display the specific platform or operating system error
message. Consult your operating system manual for information on how to handle such
errors.

4 Meaning of the third long in a cluster
If the first long in a cluster is 3 (isc_arg_cstring), the cluster’s total length is three longs.
The third long always contains the address of a message string requiring translation into
a standard, null-terminated C string before display. Such a string is often a file or path
name. InterBase functions like isc_interprete() automatically handle this translation for you.

4 Status vector parsing example
The following C example illustrates a simple, brute force parsing of the status vector. The
code forces an error condition. The error-handling block parses the status vector array
cluster by cluster, printing the contents of each cluster and interpreting it for you.

USING INFORMATION IN THE STATUS VECTOR

API GUIDE 179

#include <ibase.h>

. . .

ISC_STATUS status_vector[20];

main()

{

int done, v; /* end of args?, index into vector */

int c, extra; /* cluster count, 3 long cluster flag */

static char *meaning[] = {"End of error information",

"n InterBase error code"," string address"," string length",

" numeric value"," system code"};

/* Assume database is connected and transaction started here. */

if (status_vector[0] == 1 && status_vector[1] > 0)

error_exit();

. . .

}

void error_exit(void)

{

done = v = 0;

c = 1;

while (!done)

{

extra = 0;

printf("Cluster %d:\n", c);

printf("Status vector %d: %ld: ", v, status_vector[v]);

if (status_vector[v] != gds_arg_end)

printf("Next long is a");

switch (status_vector[v++])

{

case gds_arg_end:

printf("%s\n", meaning[0]);

done = 1;

break;

case gds_arg_gds:

printf("%s\n", meaning[1]);

break;

case gds_arg_string:

case gds_arg_interpreted:

printf("%s\n", meaning[2]);

break;

case gds_arg_number:

printf("%s\n", meaning[4]);

break;

CHAPTER 10 HANDLING ERROR CONDITIONS

180 INTERBASE 5

case gds_arg_cstring:

printf("%s\n", meaning[3]);

extra = 1;

break;

default:

printf("%s\n", meaning[5]);

break;

}

if (!done)

{

printf("Status vector %d: %ld", v, status_vector[v]);

v++;/* advance vector pointer */

c++;/* advance cluster count */

if (extra)

{

printf(": Next long is a %s\n", meaning[2]);

printf("Status vector: %d: %ld\n\n", v,

status_vector[v]);

v++;

}

else

printf("\n\n");

}

}

isc_rollback_transaction(status_vector, &trans);

isc_detach_database(&db1);

return(1);

}

Here is a sample of the output from this program:

Cluster 1:

Status vector 0: 1: Next long is an InterBase error code

Status vector 1: 335544342

Cluster 2:

Status vector 2: 4: Next long is a numeric value

Status vector 3: 1

Cluster 3:

Status vector 4: 1: Next long is an InterBase error code

Status vector 5: 335544382

Cluster 4:

Status vector 6: 2: Next long is a string address

Status vector 7: 156740

USING INFORMATION IN THE STATUS VECTOR

API GUIDE 181

Cluster 5:

Status vector 8: 0: End of error information

This output indicates that two InterBase errors occurred. The first error code is
335544342. The error printing routines, isc_print_status() and isc_interprete(), use the
InterBase error code to retrieve a corresponding base error message. The base error
message contains placeholders for replaceable parameters. For error code 335544342, the
base error message string is:

"action cancelled by trigger (%ld) to preserve data integrity"

This error message uses a replaceable numeric parameter, %ld.

In this case, the numeric value to use for replacement, 1, is stored in the second long of
the second cluster. When the error printing routine inserts the parameter into the
message, it displays the message:

action cancelled by trigger (1) to preserve data integrity

The second error code is 335544382. The base message retrieved for this error code is:

"%s"

In this case, the entire message to be displayed consists of a replaceable string. The
second long of the fourth cluster contains the address of the replacement string, 156740.
This is an error message defined in the trigger that caused the error. When the error
printing routine inserts the message from the trigger into the base message, it displays
the resulting message:

-Department name is missing.

Note This sample program is only meant to illustrate the structure of the status vector
and its contents. While the error-handling routine in this program might serve as a limited
debugging tool for a program under development, it does not provide useful information
for end users. Ordinarily, error-handling blocks in applications should interpret errors,
display explanatory error messages, and take corrective action, if appropriate.

For example, if the error-handling routine in the sample program had called
isc_print_status() to display the error messages associated with these codes, the following
messages would have been displayed:

action cancelled by trigger (1) to preserve data integrity

-Department name is missing.

182 INTERBASE 5

API GUIDE 183

CHAPTER

11
Chapter 11Working with Events

This chapter describes how to work with events, a message passed from a trigger or stored
procedure to an application to announce the occurrence of a specified condition or
action, usually a database change such as an insertion, modification, or deletion of a
record. It explains how to set up event buffers, and use the following API functions to
make synchronous and asynchronous event calls. In the following table, functions are
listed in the order they typically appear in an application:

For asynchronous events, this chapter also describes how to create an asynchronous trap
(AST), a function that responds to posted events.

Function Purpose

isc_event_block() Allocate event parameter buffers

isc_wait_for_event() Wait for a synchronous event to be posted

isc_que_events() Set up an asynchronous event and return to application processing

isc_event_counts() Determine the change in values of event counters in the event parameter
buffer

isc_cancel_events() Cancel interest in an event

TABLE 11.1 API event functions

CHAPTER 11 WORKING WITH EVENTS

184 INTERBASE 5

Understanding the event mechanism
The InterBase event mechanism consists of four parts:

g The InterBase engine that maintains an event queue and notifies applications when an
event occurs.

g Event parameter buffers set up by an application where it can receive notification of
events.

g An application that registers interest in one or more specified, named events and either
waits for notification to occur (synchronous event), or passes a pointer to an AST function
that handles notifications so that application processing can continue in the meantime
(asynchronous event).

g A trigger or stored procedure that notifies the engine that a specific, named event has
occurred. Notification is called posting.

The InterBase event mechanism enables applications to respond to actions and database
changes made by other, concurrently running applications without the need for those
applications to communicate directly with one another, and without incurring the
expense of CPU time required for periodic polling to determine if an event has occurred.

For information about creating triggers and stored procedures that post events, see the
Data Definition Guide.

Event parameter buffers
If an application is to receive notification about events, it must set up two identically-sized
event parameter buffers (EPBs) using isc_event_block(). The first buffer, event_buffer, is
used to hold the count of event occurrences before the application registers an interest
in the event. The second buffer, result_buffer, is subsequently filled in with an updated
count of event occurrences when an event of interest to the application occurs. A second
API function, isc_event_counts(), determines the differences between item counts in these
buffers to determine which event or events occurred.

For more information about setting up and using EPBs, see “Creating EPBs with
isc_event_block()” on page 186.

UNDERSTANDING THE EVENT MECHANISM

API GUIDE 185

Synchronous event notification
When an application depends on the occurrence of a specific event for processing, it
should use synchronous event notification to suspend its own execution until the event
occurs. For example, an automated stock trading application that buys or sells stock
when specific price changes occur might start execution, set up EPBs, register interest in
a set of stocks, then suspend its own execution until those price changes occur.

The isc_wait_for_event() function provides synchronous event handling for an application.
For more information about synchronous event handling, see “Waiting on events with
isc_wait_for_event()” on page 187.

Asynchronous event notification
When an application needs to react to possible database events, but also needs
to continue processing whether or not those events occur, it should set up an
asynchronous trap (AST) function, and use asynchronous event notification to register
interest in events while continuing its own processing. For example, a stock brokering
application requires constant access to a database of stocks to allow a broker to buy and
sell stock, but, at the same time, may want to use events to alert the broker to particularly
significant or volatile stock price changes.

The isc_que_events() function and the AST function provide asynchronous event handling
for an application. For more information about asynchronous event handling, see
“Continuous processing with isc_que_events()” on page 188.

Transaction control of events
Events occur under transaction control, and can therefore be committed or rolled back.
Interested applications do not receive notification of an event until the transaction from
which the event is posted is committed. If a posted event is rolled back, notification does
not occur.

A transaction can post the same event more than once before committing, but regardless
of how many times an event is posted, it is regarded as a single event occurrence for
purposes of event notification.

CHAPTER 11 WORKING WITH EVENTS

186 INTERBASE 5

Creating EPBs with isc_event_block()
Before an application can register interest in an event, it must establish and populate two
event parameter buffers (EPBs), one for holding the initial occurrence count values for
each event of interest, and another for holding the changed occurrence count values.
These buffers are passed as parameters to several API event functions.

In C, each EPB is declared as a char pointer, as follows:

char *event_buffer, *result_buffer;

Once the buffers are declared, isc_event_block() is called to allocate space for them, and to
populate them with starting values.

isc_event_block() also requires at least two additional parameters: the number of events in
which an application is registering interest, and, for each event, a string naming the
event. A single call to isc_event_block() can pass up to 15 event name strings. Event names
must match the names of events posted by stored procedures or triggers.

isc_event_block() allocates the same amount of space for each EPB, enough to handle each
named event. It returns a single value, indicating the size, in bytes, of each buffer.

The syntax for isc_event_block() is:

ISC_LONG isc_event_block(

char **event_buffer,

char **result_buffer,

unsigned short id_count,

. . .);

For example, the following code sets up EPBs for three events:

#include <ibase.h>;

. . .

char *event_buffer, *result_buffer;

long blength;

. . .

blength = isc_event_block(&event_buffer, &result_buffer, 3, "BORL",

"INTEL", "SUN");

. . .

This code assumes that there are triggers or stored procedures defined for the database
that post events named “BORL”, “INTEL”, and “SUN”.

TIP Applications that need to respond to more than 15 events can make multiple calls to
isc_event_block(), specifying different EPBs and event lists for each call.

For the complete syntax of isc_event_block(), see “isc_event_block()” on page 295.

WAITING ON EVENTS WITH ISC_WAIT_FOR_EVENT()

API GUIDE 187

Waiting on events with isc_wait_for_event()
After setting up EPBs and specifying events of interest with isc_event_block(), an application
can use isc_wait_for_event() to register interest in those events and pause its execution until
one of the events occurs.

IMPORTANT isc_wait_for_event() cannot be used in Microsoft Windows applications or under any other
operating system that does not permit processes to pause. Applications on these
platforms must use asynchronous event handling.

The syntax for isc_wait_for_event() is:

ISC_STATUS isc_wait_for_event(

ISC_STATUS *status_vector,

isc_db_handle *db_handle,

short length,

char *event_buffer,

char *result_buffer);

For example, the following code sets up EPBs for three events, then calls
isc_wait_for_event() to suspend its execution until one of the events occurs:

#include <ibase.h>;

. . .

char *event_buffer, *result_buffer;

long blength;

ISC_STATUS status_vector[20];

isc_db_handle db1;

. . .

/* Assume database db1 is attached here and a transaction started. */

blength = isc_event_block(&event_buffer, &result_buffer, 3, "BORL",

"INTEL", "SUN");

isc_wait_for_event(status_vector, &db1, (short)blength,

event_buffer, result_buffer);

/* Application processing is suspended here until an event occurs. */

. . .

Once isc_wait_for_event() is called, application processing stops until one of the requested
events is posted. When the event occurs, application processing resumes at the next
executable statement following the call to isc_wait_for_event(). If an application is waiting
on more than one event, it must use isc_event_counts() to determine which event was
posted.

CHAPTER 11 WORKING WITH EVENTS

188 INTERBASE 5

Note A single call to isc_wait_for_event() can wait on a maximum of 15 events.
Applications that need to wait on more than 15 events must wait on one set of 15, then
make another call to isc_wait_for_event() to wait on additional events.

For the complete syntax of isc_wait_for_event(), see “isc_wait_for_event()” on page 336.

Continuous processing with isc_que_events()
isc_que_events() is called to request asynchronous notification of events listed in an event
buffer passed as an argument. Upon completion of the call, but before any events are
posted, control is returned to the calling application so that it can continue processing.

When a requested event is posted, InterBase calls an asynchronous trap (AST) function,
also passed as a parameter to isc_que_events(), to handle the posting. The AST is a function
or subroutine in the calling application, the sole purpose of which is to process the event
posting for the application.

The syntax for isc_que_events() is:

ISC_STATUS isc_que_events(

ISC_STATUS *status_vector,

isc_db_handle *db_handle,

ISC_LONG *event_id,

short length,

char *event_buffer,

isc_callback event_function,

void *event_function_arg);

event_id is a long pointer that is used as a handle in subsequent calls to isc_cancel_events()
to terminate event notification. It need not be initialized when passed. The length
parameter is the size of event_buffer, which contains the current count of events to be
waited upon. event_function is a pointer to the AST function that InterBase should call
when an event of interest is posted. It is up to the AST function to notify the application
that it has been called, perhaps by setting a global flag of some kind. event_function_arg
is a pointer to the first parameter to pass to the AST.

For a complete example of a call to isc_que_events() and a call to an AST, see “A complete
isc_que_events() example” on page 189.

Creating an AST
The event function, event_function, should be written to take three arguments:

CONTINUOUS PROCESSING WITH ISC_QUE_EVENTS()

API GUIDE 189

1. The event_function_arg specified in the call to isc_que_events(). This is usually
a pointer to the event parameter buffer that should be filled in with updated
event counts.

2. The length of the following events_list buffer.

3. A pointer to the events_list buffer, a temporary event parameter buffer just
like that passed to isc_que_events(), except for having updated event counts.

A result buffer is not automatically updated by the event occurrence; it is up to the
event_function to copy the temporary events_list buffer to the more permanent buffer
that the application utilizes.

event_function also needs to let the application know that it has been called, for
example, by setting a global flag.

A sample event_function appears in the following example:

isc_callback event_function

(char *result, short length, char *updated)

{

/* Set the global event flag. */

event_flag++

/* Copy the temporary updated buffer to the result buffer. */

while (length--)

*result++ = *updated++;

return(0);

};

A complete isc_que_events() example
The following program fragment illustrates calling isc_que_events() to wait asynchronously
for event occurrences. Within a loop, it performs other processing, and checks the event
flag (presumably set by the specified event function) to determine when an event has
been posted. If one has, the program resets the event flag, calls isc_event_counts() to
determine which events have been posted since the last call to isc_que_events(), and calls
isc_que_events() to initiate another asynchronous wait.

#include <ibase.h>

#define number_of_stocks 3;

#define MAX_LOOP 10

char *event_names[] = {"DEC", "HP", "SUN"};

char *event_buffer, *result_buffer;

ISC_STATUS status_vector[20];

short length;

CHAPTER 11 WORKING WITH EVENTS

190 INTERBASE 5

ISC_LONG event_id;

int i, counter;

int event_flag = 0;

length = (short)isc_event_block(

&event_buffer,

&result_buffer,

number_of_stocks,

"DEC", "HP", "SUN");

isc_que_events(

status_vector,

&database_handle, /* Set in previous isc_attach_database(). */

&event_id,

length, /* Returned from isc_event_block(). */

event_buffer,

(isc_callback)event_function,

result_buffer);

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector); /* Display error message. */

return(1);

};

counter = 0;

while (counter < MAX_LOOP)

{

counter++;

if (!event_flag)

{

/* Do whatever other processing you want. */

;

}

else

{ event_flag = 0;

isc_event_counts(

status_vector,

length,

event_buffer,

result_buffer);

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector); /* Display error message.

*/

return(1);

CONTINUOUS PROCESSING WITH ISC_QUE_EVENTS()

API GUIDE 191

};

for (i=0; i<number_of_stocks; i++)

if (status_vector[i])

{

/* The event has been posted. Do whatever is appropriate,

e.g., initiating a buy or sell order.

Note: event_names[i] tells the name of the event

corresponding to status_vector[i]. */

;

}

isc_que_events(

status_vector,

&database_handle,

&event_id,

length,

event_buffer,

(isc_callback)event_function,

result_buffer);

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector); /* Display error message.

*/

return(1);

}

} /* End of else. */

} /* End of while. */

/* Let InterBase know you no longer want to wait asynchronously. */

isc_cancel_events(

status_vector,

&database_handle,

&event_id);

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector); /* Display error message. */

return(1);

}

CHAPTER 11 WORKING WITH EVENTS

192 INTERBASE 5

Determining which events occurred with isc_event_counts()
When an application registers interest in multiple events and receives notification that an
event occurred, the application must use isc_event_counts() to determine which event or
events occurred. isc_event_counts() subtracts values in the event_buffer array from the
values in the result_buffer array to determine the number of times each event has
occurred since an application registered interest in a set of events. event_buffer and
result_buffer are variables declared within an application, and allocated and initialized
by isc_event_block().

The difference of each element is returned in the error status array that is passed to
isc_event_counts(). To determine which events occurred, an application must examine each
element of the array for nonzero values. A nonzero count indicates the number of times
an event is posted between the time isc_event_block() is called and the first time an event
is posted after isc_wait_for_event() or isc_que_events() are called. Where multiple
applications are accessing the same database, therefore, a particular event count may be
1 or more, and more than one event count element may be nonzero.

Note When first setting up an AST to trap events with isc_que_events(), InterBase initializes
all count values in the status vector to 1, rather than 0. To clear the values, call
isc_event_counts() to reset the values.

In addition to determining which event occurred, isc_event_counts() reinitializes the
event_buffer array in anticipation of another call to isc_wait_for_event() or isc_que_events().
Values in event_buffer are set to the same values as corresponding values in
result_buffer.

The complete syntax for isc_event_counts() is:

void isc_event_counts(

ISC_STATUS status_vector,

short buffer_length,

char *event_buffer,

char *result_buffer);

For example, the following code declares interest in three events, waits on them, then
uses isc_event_counts() to determine which events occurred:

#include <ibase.h>;

. . .

char *event_buffer, *result_buffer;

long blength;

ISC_STATUS status_vector[20];

isc_db_handle db1;

long count_array[3];

int i;

CANCELING INTEREST IN ASYNCHRONOUS EVENTS WITH ISC_CANCEL_EVENTS()

API GUIDE 193

. . .

/* Assume database db1 is attached here and a transaction started. */

blength = isc_event_block(&event_buffer, &result_buffer, 3, "BORL",

"INTEL", "SUN");

isc_wait_for_event(status_vector, &db1, (short)blength,

event_buffer, result_buffer);

/* Application processing is suspended here until an event occurs. */

isc_event_counts(status_vector, (short)blength, event_buffer,

result_buffer);

for (i = 0; i < 3; i++)

{

if (status_vector[i])

{

/* Process the event here. */

;

}

}

For more information about isc_event_counts(), see “isc_event_counts()” on page 296 of
Chapter 12, “API Function Reference.”

Canceling interest in asynchronous events
with isc_cancel_events()

An application that requested asynchronous event notification with isc_que_events() can
subsequently cancel the notification request at any time with isc_cancel_events() using the
following syntax:

ISC_STATUS isc_cancel_events(

ISC_STATUS *status_vector,

isc_db_handle *db_handle,

ISC_LONG *event_id);

event_id is an event handle set in a previous call to isc_que_events(). For example, the
following code cancels interest in the event or events identified by event_id:

include <ibase.h>;

. . .

/* For example code leading up to this call, see the code example

in "Continuous Processing with isc_event_que(), earlier in this

chapter. */

isc_cancel_events(status_vector, &db_handle, &event_id);

194 INTERBASE 5

API GUIDE 195

PART II

Part IIAPI
Reference

Guide
Part II: API Reference Guide

196 INTERBASE 5

API GUIDE 197

CHAPTER

12
Chapter 12API Function Reference

This chapter is an alphabetical reference for the InterBase API function calls. It provides
tables that categorize calls by the tasks they perform, and then provides an alphabetical
and detailed description of each call, including its syntax, arguments, examples of use,
and cross references to related calls.

Function categories
There are ten classes of InterBase API function calls:

g Array functions for handling arrays of data

g Blob functions for handling the InterBase Blob datatype

g Database functions for handling database requests

g Conversion functions for translating dates between InterBase format and Unix tm format,
and for reversing the byte-order of integers

g DSQL functions for handling SQL statements entered by users at run time

g Error-handling functions

g Event functions for registering interest in events posted by triggers and stored procedures
in applications and for processing the event queue

CHAPTER 12 API FUNCTION REFERENCE

198 INTERBASE 5

g Information functions for retrieving information about databases, transactions, Blob data,
and events

g Security functions for adding, deleting, and modifying user records in the password
database

g Transaction functions for handling transactions in an application

Some functions, such as information calls, occur in more than one class.

Array functions
The following table summarizes the InterBase API functions available for handling array
data in an application:

Function name Purpose

isc_array_get_slice() Retrieve a specified part of an array field

isc_array_lookup_bounds() Determine the dimensions of an array field

isc_array_lookup_desc() Retrieve an array description

isc_array_put_slice() Write a specified part of an array field

isc_array_set_desc() Set an array description

TABLE 12.1 Array functions

FUNCTION CATEGORIES

API GUIDE 199

Blob functions
The following table summarizes the InterBase API functions available for handling Blob
data in an application:

Function name Purpose

isc_blob_default_desc() Set a default Blob description for dynamic access

isc_blob_gen_bpb() Generate a Blob parameter buffer (BPB) for dynamic access

isc_blob_info() Request information about a Blob field

isc_blob_lookup_desc() Retrieve a Blob description

isc_blob_set_desc() Set a Blob description

isc_cancel_blob() Discard a Blob

isc_close_blob() Close a Blob

isc_create_blob2() Create a new Blob

isc_get_segment() Retrieve a segment of Blob data

isc_open_blob2() Open a Blob for read access

isc_put_segment() Write a segment of Blob data

TABLE 12.2 Blob functions

CHAPTER 12 API FUNCTION REFERENCE

200 INTERBASE 5

Database functions
The following table summarizes the InterBase API functions available for handling
database requests in an application:

Conversion functions
The following table summarizes the InterBase API functions available for translating
between InterBase DATE format and the Unix tm date format, and for reversing the
byte-order of an integer:

Function name Purpose

isc_attach_database() Connect to an existing database

isc_database_info() Request information about an attached database

isc_detach_database() Disconnect from a database

isc_drop_database() Delete an attached database and its associated files

isc_expand_dpb() Build a database parameter buffer (DPB) dynamically

isc_version() Retrieve database implementation number and on-disk
structure (ODS) major and minor version numbers

TABLE 12.3 Database functions

Function name Purpose

isc_decode_date() Translate a date from InterBase format to C tm format

isc_encode_date() Translate a date from C tm format to InterBase format

isc_vax_integer() Reverse the byte-order of an integer

TABLE 12.4 Date and conversion functions

FUNCTION CATEGORIES

API GUIDE 201

DSQL functions
The following table summarizes the InterBase API functions available for handling DSQL
statements built or entered by users at run time:

Function name Purpose

isc_dsql_allocate_statement() Allocate a statement handle

isc_dsql_alloc_statement2() Allocate a statement handle that is automatically freed on
database detachment

isc_dsql_describe() Fill in an XSQLDA with information about values returned by a
statement

isc_dsql_describe_bind() Fill in an XSQLDA with information about a statement’s input
parameters

isc_dsql_execute() Execute a prepared statement

isc_dsql_execute2() Execute a prepared statement returning a single set of values

isc_dsql_execute_immediate() Prepare and execute a statement without return values for
one-time use

isc_dsql_exec_immed2() Prepare and execute a statement with a single set of return
values for one-time use

isc_dsql_fetch() Retrieve data returned by a previously prepared and executed
statement

isc_dsql_free_statement() Free a statement handle, or close a cursor associated with a
statement handle

isc_dsql_prepare() Prepare a statement for execution

isc_dsql_set_cursor_name() Define a cursor name and associate it with a statement handle

isc_dsql_sql_info() Request information about a prepared statement

TABLE 12.5 DSQL functions

CHAPTER 12 API FUNCTION REFERENCE

202 INTERBASE 5

Error-handling functions
The following table summarizes the InterBase API functions available for handling
database error conditions an application:

Event functions
The following table summarizes the InterBase API functions available for handling events
in an application:

Function name Purpose

isc_interprete() Capture InterBase error messages to a buffer

isc_print_sqlerror() Display an SQL error message

isc_print_status() Display InterBase error messages

isc_sqlcode() Set the value of SQLCODE

isc_sql_interprete() Capture an SQL error message to a buffer

TABLE 12.6 Error-handling functions

Function name Purpose

isc_cancel_events() Cancel interest in an event

isc_event_block() Allocate event parameter buffers

isc_event_counts() Get the change in values of event counters in the event array

isc_que_events() Wait asynchronously until an event is posted

isc_wait_for_event() Wait synchronously until an event is posted

TABLE 12.7 Event functions

FUNCTION CATEGORIES

API GUIDE 203

Information functions
The following table summarizes the InterBase API functions available for reporting
information about databases, transactions, and Blob data to a client application that
requests it:

Security functions
The following table summarizes the InterBase API functions available for adding,
deleting, and modifying user records in the password database:

Function name Purpose

isc_blob_info() Request information about a Blob field

isc_database_info() Request information about an attached database

isc_dsql_sql_info() Request information about a prepared DSQL statement

isc_transaction_info() Request information about a specified transaction

isc_version() Retrieve database implementation number and on-disk structure
(ODS) major and minor version numbers

TABLE 12.8 Information functions

Function name Purpose

isc_add_user() Adds a user to the password database

isc_delete_user() Deletes a user from the password database

isc_modify_user() Modifies user information in the password database

TABLE 12.9 Security functions

CHAPTER 12 API FUNCTION REFERENCE

204 INTERBASE 5

Transaction control functions
The following table summarizes the InterBase API functions available for controlling
transactions in an application:

Function name Purpose

isc_commit_retaining() Commit a transaction, and start a new one using the original
transaction’s context

isc_commit_transaction() Save a transaction’s database changes, and end the transaction

isc_prepare_transaction() Execute the first phase of a two-phase commit

isc_prepare_transaction2() Execute the second phase of a two-phase commit

isc_rollback_transaction() Undo a transaction’s database changes, and end the transaction

isc_start_multiple() Begin new transactions (used on systems that do not support a
variable number of input arguments)

isc_start_transaction() Begin new transactions

isc_transaction_info() Request information about a specified transaction

TABLE 12.10 Transaction control functions

USING FUNCTION DEFINITIONS

API GUIDE 205

Using function definitions
Each function definition in this chapter includes the elements in the following table:

Element Description

Title Function name

Definition Main purpose of function

Syntax Diagram of the function and parameters

Parameters Table describing each parameter

Description Detailed information about using the function

Example Example of using the function in a program

Return value Description of possible values returned in the status vector, if any

See also Cross references to other related functions

TABLE 12.11 Function description format

CHAPTER 12 API FUNCTION REFERENCE

206 INTERBASE 5

isc_add_user()
Adds a user record to the password database, isc4.gdb.

Syntax ISC_STATUS isc_add_user(

ISC_STATUS *status

USER_SEC_DATA *user_sec_data);

Description The three security functions, isc_add_user(), isc_delete_user(), and isc_modify_user() mirror
functionality that is available in the gsec command-line utility. isc_add_user() adds a record
to isc4.gdb, InterBase’s password database.

At a minimum, you must provide the user name and password. If the server is not local,
you must also provide a server name and protocol. Valid choices for the protocol field are
sec_protocol_tcpip, sec_protocol_netbeui, sec_protocol_spx, and sec_protocol_local.

InterBase reads the settings for the ISC_USER and ISC_PASSWORD environment variables if
you do not provide a DBA user name and password.

The definition for the USER_SEC_DATA struct in ibase.h is as follows:

typedef struct {

short sec_flags; /* which fields are specified */

int uid; /* the user’s id */

int gid; /* the user’s group id */

int protocol; /* protocol to use for connection */

char *server; /* server to administer */

char *user_name; /* the user’s name */

char *password; /* the user’s password */

char *group_name; /* the group name */

char *first_name; /* the user’s first name */

char *middle_name; /* the user’s middle name */

char *last_name; /* the user’s last name */

char *dba_user_name; /* the dba user name */

char *dba_password; /* the dba password */

} USER_SEC_DATA;

Parameter Type Description

status vector ISC_STATUS * Pointer to the error status vector

user_sec_data USER_SEC_DATA * Pointer to a struct that is defined in ibase.h

USING FUNCTION DEFINITIONS

API GUIDE 207

When you pass this struct to one of the three security functions, you can tell it which
fields you have specified by doing a bitwise OR of the following values, which are defined
in ibase.h:

sec_uid_spec 0x01

sec_gid_spec 0x02

sec_server_spec 0x04

sec_password_spec 0x08

sec_group_name_spec 0x10

sec_first_name_spec 0x20

sec_middle_name_spec 0x40

sec_last_name_spec 0x80

sec_dba_user_name_spec 0x100

sec_dba_password_spec 0x200

No bit values are available for user name and password, since they are required.

The following error messages exist for this function:

Code Value Description

isc_usrname_too_long 335544747 The user name passed in is greater than 31 bytes

isc_password_too_long 335544748 The password passed in is longer than 8 bytes

isc_usrname_required 335544749 The operation requires a user name

isc_password_required 335544750 The operation requires a password

isc_bad_protocol 335544751 The protocol specified is invalid

isc_dup_usrname_found 335544752 The user name being added already exists in the
security database

isc_usrname_not_found 335544753 The user name was not found in the security database

isc_error_adding_sec_record 335544754 An unknown error occurred while adding a user

isc_error_deleting_sec_record 335544755 An unknown error occurred while deleting a user

isc_error_modifying_sec_record 335544756 An unknown error occurred while modifying a user

isc_error_updating_sec_db 335544757 An unknown error occurred while updating the security
database

TABLE 12.12 Error messages for user security functions

CHAPTER 12 API FUNCTION REFERENCE

208 INTERBASE 5

Example The following example adds a user (“Socks”) to the password database, using the
bitwise OR technique for passing values from the USER_SEC_DATA struct.

{

ISC_STATUS status[20];

USER_SEC_DATA sec;

sec.server = "kennel";

sec.dba_user_name = "sysdba";

sec.dba_password = "masterkey";

sec.protocol = sec_protocol_tcpip;

sec.first_name = "Socks";

sec.last_name = "Clinton";

sec.user_name = "socks";

sec.password = "2meow!"; /* Note: do not hardcode passwords

*/

sec.sec_flags = sec_server_spec

| sec_password_spec

| sec_dba_user_name_spec

| sec_dba_password_spec

| sec_first_name_spec

| sec_last_name_spec;

isc_add_user(status, &sec);

/* check status for errors */

if (status[0] == 1 && status[1])

{

switch (status[1]) {

case isc_usrname_too_long:

printf("Security database cannot accept long user names\n");

break;

...

}

}

}

Return Value isc_add_user() returns the second element of the status vector. Zero indicates success. A
nonzero value indicates an error. See the “Description” section for this function for a list
of error codes. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_delete_user(), isc_modify_user()

USING FUNCTION DEFINITIONS

API GUIDE 209

isc_array_get_slice()
Retrieves data from an array column in a row returned by a SELECT.

Syntax ISC_STATUS isc_array_get_slice(

ISC_STATUS *status_vector,

isc_db_handle *db_handle,

isc_tr_handle *trans_handle,

ISC_QUAD *array_id,

ISC_ARRAY_DESC *desc,

void *dest_array,

ISC_LONG *slice_length);

isc_array_get_slice() retrieves data from an array column of a table row using an array ID.
You can either retrieve all the array elements in that column, or a subset of contiguous
array elements, called a slice. The upper and lower boundaries in the desc structure
specify which elements are to be retrieved.

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

db_handle isc_db_handle * Pointer to a database handle set by a previous call to
isc_attach_database(); the handle identifies the
database containing the array column

db_handle returns an error in status_vector if it is NULL

trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been
set by a previous isc_start_transaction() call;
trans_handle returns an error if NULL

array_id ISC_QUAD * Internal identifier for the array; the array ID must be
previously retrieved through API DSQL functions

desc ISC_ARRAY_DESC * Descriptor defining the array slice (entire array or
subset) to be retrieved

dest_array void * Pointer to a buffer of length slice_length into which
the array slice will be copied by this function

slice_length ISC_LONG * Length, in bytes, of the dest_array buffer

CHAPTER 12 API FUNCTION REFERENCE

210 INTERBASE 5

InterBase copies the elements into the buffer, dest_array, whose size is specified by
slice_length. This should be at least the expected length required for the elements
retrieved. Before returning from isc_array_get_slice(), InterBase sets slice_length to the
actual number of bytes copied.

Before calling isc_array_get_slice(), there are many operations you must do in order to fill
in the array descriptor, desc, determine the appropriate internal array identifier, array_id,
and fetch the rows whose array columns you want to access. For complete step-by-step
instructions for setting up an array descriptor and retrieving array information, see
Chapter 8, “Working with Array Data.”

Note Never execute a DSQL statement that tries to access array column data directly
unless you are fetching only a single element. The way to access slices of array column
data is to call isc_array_get_slice() or isc_array_put_slice(). The only supported array
references in DSQL statements are ones that specify an entire array column (that is, just
the column name) in order to get the internal identifier for the array, which is required
by isc_array_get_slice() and isc_array_put_slice(), or single element references.

Example The following program operates on a table named PROJ_DEPT_BUDGET.
This table contains the quarterly head counts allocated for each project in each
department of an organization. Each row of the table applies to a particular department
and project. The quarterly head counts are contained in an array column named
QUARTERLY_HEAD_CNT. Each row has four elements in this column, one per quarter. Each
element of the array is a number of type long.

The example below selects the rows containing 1994 information for the project named
VBASE. For each such row, it retrieves and prints the department number and the data in
the array column (that is, the quarterly head counts).

In addition to illustrating the usage of isc_array_lookup_bounds() and isc_array_get_slice(), the
program shows data structure initializations and calls to the DSQL functions required to
prepare and execute the SELECT statement, to obtain the array_id needed by
isc_array_get_slice(), and to fetch the selected rows one by one.

#include <ibase.h>

#define Return_if_Error(stat) if (stat[0] == 1 && stat[1]) \

{ \

isc_print_status(stat); \

return(1); \

}

char *sel_str =

"SELECT dept_no, quarterly_head_cnt FROM proj_dept_budget \

WHERE year = 1994 AND proj_id = ’VBASE’";

char dept_no[6];

long hcnt[4], tr_handle, database_handle, SQLCODE;

USING FUNCTION DEFINITIONS

API GUIDE 211

short len, i, flag0, flag1;

ISC_QUAD array_id;

ISC_ARRAY_DESC desc;

ISC_STATUS status_vector[20], fetch_stat;

isc_stmt_handle stmt = NULL;

XSQLDA *osqlda;

tr_handle = database_handle = 0L;

/* Attach to a database here--this code omitted for brevity */

/* Start a transaction here--this code omitted for brevity */

/* Set up the SELECT statement. */

/* Allocate the output XSQLDA for holding the array data. */

osqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(2));

osqlda->sqln = 2;

osqlda->version = 1;

/* Allocate a statement handle. */

isc_dsql_allocate_statement(

status_vector,

&database_handle,

&stmt);

Return_if_Error(status_vector);

/* Prepare the query for execution. */

isc_dsql_prepare(

status_vector,

&tr_handle,

&stmt,

0,

sel_str,

1,

osqlda);

Return_if_Error(status_vector);

/* Set up an XSQLVAR structure to allocate space for each item

to be retrieved. */

osqlda->sqlvar[0].sqldata = (char *) dept_no;

osqlda->sqlvar[0].sqltype = SQL_TEXT + 1;

osqlda->sqlvar[0].sqlind = &flag0;

osqlda->sqlvar[1].sqldata = (char *) &array_id;

osqlda->sqlvar[1].sqltype = SQL_ARRAY + 1;

osqlda->sqlvar[1].sqlind = &flag1;

/* Execute the SELECT statement. */

isc_dsql_execute(

status_vector,

&tr_handle,

CHAPTER 12 API FUNCTION REFERENCE

212 INTERBASE 5

&stmt,

1,

NULL);

Return_if_Error(status_vector);

/* Set up the array descriptor. */

isc_array_lookup_bounds(

status_vector,

&database_handle, /* Set by previous isc_attach_database() call. */

&tr_handle, /* Set by previous isc_start_transaction() call. */

"PROJ_DEPT_BUDGET", /* Table name. */

"QUARTERLY_HEAD_CNT", /* Array column name. */

&desc);

Return_if_Error(status_vector);

/* Fetch the head count for each department’s four quarters. */

while ((fetch_stat = isc_dsql_fetch(

status_vector,

&stmt,

1,

osqlda)) == 0)

{

if (!flag1)

{

/* There is array data; get the current values. */

len = sizeof(hcnt);

/* Fetch the data from the array column into hcnt array. */

isc_array_get_slice(

status_vector,

&database_handle,

&tr_handle,

&array_id,

&desc,

hcnt,

&len);

Return_if_Error(status_vector);

/* Print department number and head counts. */

dept_no[osqlda->sqlvar[0].sqllen] = ’\0’;

printf("Department #: %s\n\n", dept_no);

printf("\tCurrent counts: %d %d %d %d\n",

hcnt[0], hcnt[1], hcnt[2], hcnt[3]);

};

USING FUNCTION DEFINITIONS

API GUIDE 213

}

if (fetch_stat != 100L)

{

SQLCODE = isc_sqlcode(status_vector);

isc_print_sqlerror(SQLCODE, status_vector);

return(1);

}

Return Value isc_array_get_slice() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to isc_bad_stmt_handle,
isc_bad_trans_handle, or another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_array_lookup_bounds(), isc_array_lookup_desc(), isc_array_put_slice(),
isc_array_set_desc(), isc_dsql_fetch(), isc_dsql_prepare()

CHAPTER 12 API FUNCTION REFERENCE

214 INTERBASE 5

isc_array_lookup_bounds()
Determines the datatype, length, scale, dimensions, and array boundaries for the
specified array column in the specified table.

Syntax ISC_STATUS isc_array_lookup_bounds(

ISC_STATUS *status_vector,

isc_db_handle *db_handle,

isc_tr_handle *trans_handle,

char *table_name,

char *column_name,

ISC_ARRAY_DESC *desc);

Description isc_array_lookup_bounds() determines the datatype, length, scale, dimensions, and array
boundaries for the elements in an array column, column_name in the table,
table_name. It stores this information in the array descriptor, desc.

isc_array_lookup_bounds() also sets to 0 a flag in the descriptor. This specifies that the array
should be accessed in future function calls in row-major order, the default. If an
application requires column-major access, reset this flag to 1.

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

db_handle isc_db_handle * Pointer to a database handle set by a previous call to
isc_attach_database(); the handle identifies the
database containing the array column

db_handle returns an error in status_vector if it is NULL

trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been
set by a previous isc_start_transaction() call;
trans_handle returns an error if NULL

table_name char * Name of the table containing the array column,
column_name; can be either null-terminated or
blank-terminated

column_name char * Name of the array column; can be either
null-terminated or blank-terminated

desc ISC_ARRAY_DESC * Pointer to a descriptor for the arrays that will be filled
in by this function

USING FUNCTION DEFINITIONS

API GUIDE 215

The array descriptor is used in subsequent calls to isc_array_get_slice() or
isc_array_put_slice().

For a detailed description of the array descriptor, see Chapter 8, “Working with Array
Data.”

Note There are ways to fill in an array descriptor other than by calling
isc_array_lookup_bounds(). You can also:

g Call isc_array_lookup_desc(). This is exactly the same as calling isc_array_lookup_bounds(),
except that the former does not fill in information about the upper and lower bounds of
each dimension.

g Call isc_array_set_desc() to initialize the descriptor from parameters you call it with, rather
than accessing the database metadata.

g Set the descriptor fields directly. Note that array_desc_dtype must be expressed as one of
the datatypes in the following table, and the parameters, array_desc_field_name, and
array_desc_relation_name, must be null-terminated:

array_desc_dtype Corresponding InterBase datatype

blr_text CHAR

blr_text2 CHAR

blr_short SMALLINT

blr_long INTEGER

blr_quad ISC_QUAD structure

blr_float FLOAT

blr_double DOUBLE PRECISION

blr_date DATE

blr_varying VARCHAR

blr_varying2 VARCHAR

blr_blob_id ISC_QUAD structure

blr_cstring NULL-terminated string

blr_cstring2 NULL-terminated string

TABLE 12.13 Datatypes for array descriptor fields

CHAPTER 12 API FUNCTION REFERENCE

216 INTERBASE 5

Example The following illustrates a sample call to isc_array_lookup_bounds(). More complete
examples of accessing arrays are found in the example programs for isc_array_get_slice()
and isc_array_put_slice().

#include <ibase.h>

ISC_STATUS status_vector[20];

ISC_ARRAY_DESC desc;

char *str1 = "PROJ_DEPT_BUDGET";

char *str2 = "QUARTERLY_HEAD_CNT";

isc_array_lookup_bounds(

status_vector,

&database_handle, /* Set in previous isc_attach_database() call. */

&tr_handle, /* Set in previous isc_start_transaction() call. */

str1,

str2,

&desc);

if (status_vector[0] == 1 && status_vector[1])

{

/* Process error. */

isc_print_status(status_vector);

return(1);

}

Return Value isc_array_lookup_bounds() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to isc_bad_stmt_handle,
isc_bad_trans_handle, isc_fld_not_def, or another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_array_get_slice(), isc_array_lookup_desc(), isc_array_put_slice(),
isc_array_set_desc()

USING FUNCTION DEFINITIONS

API GUIDE 217

isc_array_lookup_desc()
Determines the datatype, length, scale, and dimensions for all elements in the specified
array column in the specified table.

Syntax ISC_STATUS isc_array_lookup_desc(

ISC_STATUS *status_vector,

isc_db_handle *db_handle,

isc_tr_handle *trans_handle,

char *table_name,

char *column_name,

ISC_ARRAY_DESC *desc);

Description isc_array_lookup_desc() determines the datatype, length, scale, and dimensions for the
array column, column_name, in the table, table_name. It stores this information in the
array descriptor, desc.

It also sets to 0 a flag in the descriptor. This specifies that the array is accessed in future
function calls in row-major order, the default. If an application requires column-major
access, reset this flag to 1.

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

db_handle isc_db_handle * Pointer to a database handle set by a previous call to
isc_attach_database(); the handle identifies the
database containing the array column

db_handle returns an error in status_vector if it is NULL

trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been
set by a previous isc_start_transaction() call;
trans_handle returns an error if NULL

table_name char * Name of the table containing the array column
column_name; can be either null-terminated or
blank-terminated

column_name char * Name of the array column; can be either
null-terminated or blank-terminated

desc ISC_ARRAY_DESC * Pointer to an array descriptor that will be filled in by
this function

CHAPTER 12 API FUNCTION REFERENCE

218 INTERBASE 5

The array descriptor is used in subsequent calls to isc_array_get_slice() or
isc_array_put_slice().

For a detailed description of the array descriptor, see Chapter 8, “Working with Array
Data.”

Note There are ways to fill in an array descriptor other than by calling
isc_array_lookup_desc(). You can also:

g Call isc_array_lookup_bounds(). This is like isc_array_lookup_desc(), except that
isc_array_lookup_bounds() also fills in information about the upper and lower bounds of
each dimension.

g Call isc_array_set_desc(), to initialize the descriptor from parameters you call it with, rather
than accessing the database metadata.

g Set the descriptor fields directly. Note that array_desc_dtype must be expressed as one of
the datatypes in the following table, and the parameters, array_desc_field_name, and
array_desc_relation_name, must be null-terminated:

array_desc_dtype Corresponding InterBase datatype

blr_text CHAR

blr_text2 CHAR

blr_short SMALLINT

blr_long INTEGER

blr_quad ISC_QUAD structure

blr_float FLOAT

blr_double DOUBLE PRECISION

blr_date DATE

blr_varying VARCHAR

blr_varying2 VARCHAR

blr_blob_id ISC_QUAD structure

blr_cstring NULL-terminated string

blr_cstring2 NULL-terminated string

TABLE 12.14 Datatypes for array descriptor fields

USING FUNCTION DEFINITIONS

API GUIDE 219

Example The following illustrates a sample call to isc_array_lookup_desc(). More complete examples
of accessing arrays are found in the example programs for isc_array_get_slice() and
isc_array_put_slice().

#include <ibase.h>

ISC_STATUS status_vector[20];

ISC_ARRAY_DESC desc;

char str1 = "PROJ_DEPT_BUDGET";

char str2 = "QUARTERLY_HEAD_CNT";

isc_array_lookup_desc(

status_vector,

&database_handle, /* Set in previous isc_attach_database() call. */

&tr_handle, /* Set in previous isc_start_transaction() call. */

str1,

str2,

&desc);

if (status_vector[0] == 1 && status_vector[1])

{

/* Process error. */

isc_print_status(status_vector);

return(1);

};

Return Value isc_array_lookup_desc() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to isc_bad_stmt_handle,
isc_bad_trans_handle, isc_fld_not_def, or another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_array_get_slice(), isc_array_lookup_bounds(), isc_array_put_slice(),
isc_array_set_desc()

CHAPTER 12 API FUNCTION REFERENCE

220 INTERBASE 5

isc_array_put_slice()
Writes data into an array column.

Syntax ISC_STATUS isc_array_put_slice(

ISC_STATUS *status_vector,

isc_db_handle *db_handle,

isc_tr_handle *trans_handle,

ISC_QUAD *array_id,

ISC_ARRAY_DESC *desc,

void *source_array,

ISC_LONG *slice_length);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

db_handle isc_db_handle * Pointer to a database handle set by a previous call to
isc_attach_database(); the handle identifies the
database containing the array column

db_handle returns an error in status_vector if it is NULL

trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been
set by a previous isc_start_transaction() call;
trans_handle returns an error if NULL

array_id ISC_QUAD * On input, NULL (if you are creating a new array), or the
internal identifier for an array to be modified, as
assigned by the InterBase engine. This internal
identifier must have been determined by previous
calls to DSQL functions.

This function changes array_id to be the identifier for
the array it creates or modifies (see below).

desc ISC_ARRAY_DESC * Descriptor defining the array slice (entire array or
subset) to be written to

source_array void * Pointer to a buffer of length slice_length, that contains
the slice of data that will be copied to the array by this
function

slice_length ISC_LONG * Length, in bytes, of the source_array buffer

USING FUNCTION DEFINITIONS

API GUIDE 221

Description isc_array_put_slice() writes data into an array column. You can either store into all the
array elements in that column, or into an array slice, a subset of contiguous array
elements. The boundaries passed to the function in the array descriptor, desc, specify
which elements are to be stored into.

InterBase copies the elements from the buffer, source_array, whose size is specified by
slice_length.

The array identifier (array ID), array_id, should be passed as NULL if you are calling
isc_array_put_slice() to create a new array. If you are calling it to modify an existing array,
then array_id should be the identifier of the array to be modified. This must have been
determined by previous calls to DSQL functions.

When isc_array_put_slice() is called with an array ID of an existing array, it:

1. Creates a new array with the same dimensions, bounds, etc., as the specified
array, and copies the existing array data to the new array.

2. Writes the data from the array buffer, source_array, to the new array (or slice
of the array), per the bounds specified in the array descriptor, desc.

3. Returns in the same array_id variable the array ID of the new array.

When isc_array_put_slice() is called with a NULL array ID, it:

1. Creates a new empty array with dimensions, bounds, etc., as declared for the
array column whose name and table name are specified in the array
descriptor, desc.

2. Writes the data from the array buffer, source_array, to the new array (or slice
of the array)

3. Returns in the array_id variable the array ID of the new array.

Note that in both cases, a new array is created, and its array ID is returned in the array_id
variable. The array is temporary until an UPDATE or INSERT statement is executed to
associate the array with a particular column of a particular row.

You can make a single call to isc_array_put_slice() to write all the data you wish to the array.
Or, you can call isc_array_put_slice() multiple times
to store data into various slices of the array. In this case, each call to isc_array_put_slice()
after the first call should pass the array ID of the temporary array. When
isc_array_put_slice() is called with the array ID of a temporary array, it copies the specified
data to the specified slice of the temporary array (it will not create a new array), and it
doesn’t modify array_id.

Before calling isc_array_put_slice(), there are many operations you must do in order to fill
in the array descriptor, desc, determine the appropriate internal array identifier, array_id,
and fetch the rows whose array columns you want to access.

CHAPTER 12 API FUNCTION REFERENCE

222 INTERBASE 5

For complete step-by-step instructions for setting up an array descriptor and writing array
information, see Chapter 8, “Working with Array Data.”

Note Never execute a DSQL statement that tries to directly store data into an array
column. The only way to access array column data is by calling isc_array_get_slice() or
isc_array_put_slice(). The only supported array references in DSQL statements are ones that
specify an entire array column (that is, just the column name) in order to get the internal
identifier for the array, which is required by isc_array_get_slice() and isc_array_put_slice().

Example The following program operates on a table named PROJ_DEPT_BUDGET. This table
contains the quarterly head counts allocated for each project in each department of an
organization. Each row of the table applies to a particular department and project. The
quarterly head counts are contained in an array column named QUARTERLY_HEAD_CNT.
Each table row has four elements in this column, one per quarter. Each element is a
number of type long.

This program selects the rows containing 1994 information for the project named VBASE.
For each such row, it calls isc_array_get_slice() to retrieve a slice of the array, the quarterly
head counts for the last two quarters. It then increments each, and calls isc_array_put_slice()
to store the updated values.

In addition to illustrating the usage of isc_array_lookup_desc(), isc_array_get_slice(), and
isc_array_put_slice(), the program shows data structure initializations and calls to the DSQL
functions required to prepare and execute the SELECT and UPDATE statements, to obtain
the array_id needed by isc_array_get_slice() and isc_array_put_slice(), to fetch the selected
rows one by one, and to update the array ID.

#include <ibase.h>

#define Return_if_Error(stat) if (stat[0] == 1 && stat[1]) \

{ \

isc_print_status(stat); \

return(1); \

}

char *sel_str =

"SELECT dept_no, quarterly_head_cnt FROM proj_dept_budget \

WHERE year = 1994 AND proj_id = ’VBASE’";

char *upd_str =

"UPDATE proj_dept_budget SET quarterly_head_count = ? \

WHERE CURRENT OF S";

char dept_no[6];

long fetch_stat, SQLCODE, hcnt[2];

USING FUNCTION DEFINITIONS

API GUIDE 223

short len, i, flag0, flag1, flag2;

ISC_QUAD array_id;

ISC_ARRAY_DESC desc;

ISC_STATUS status_vector[20];

isc_stmt_handle stmt = NULL;

isc_stmt_handle ustmt = NULL;

char *cursor = "S";

XSQLDA *osqlda, *isqlda;

/* Set up the SELECT statement. */

/* Allocate the output XSQLDA for holding the array data. */

osqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(2));

osqlda->sqln = 2;

osqlda->version = SQLDA_VERSION1;

/* Allocate a statement handle for the SELECT statement. */

isc_dsql_allocate_statement(

status_vector, &database_handle, &stmt);

Return_if_Error(status_vector);

/* Prepare the query for execution. */

isc_dsql_prepare(

status_vector,

&tr_handle,

&stmt,

0,

sel_str,

1,

osqlda);

Return_if_Error(status_vector);

/* Set up an XSQLVAR structure to allocate space for each item

to be retrieved. */

osqlda->sqlvar[0].sqldata = (char *) dept_no;

osqlda->sqlvar[0].sqltype = SQL_TEXT + 1;

osqlda->sqlvar[0].sqlind = &flag0;

osqlda->sqlvar[1].sqldata = (char *) &array_id;

osqlda->sqlvar[1].sqltype = SQL_ARRAY + 1;

osqlda->sqlvar[1].sqlind = &flag1;

CHAPTER 12 API FUNCTION REFERENCE

224 INTERBASE 5

/* Execute the SELECT statement. */

isc_dsql_execute(

status_vector,

&tr_handle,

&stmt,

1,

NULL);

Return_if_Error(status_vector);

/* Declare a cursor. */

isc_dsql_set_cursor_name(

status_vector, &stmt, cursor, 0);

Return_if_Error(status_vector);

/* Set up the UPDATE statement. */

/* Allocate a statement handle for the UPDATE statement. */

isc_dsql_allocate_statement(

status_vector, &database_handle, &ustmt);

Return_if_Error(status_vector);

/* Allocate the input XSQLDA. */

isqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(2));

isqlda->sqln = 1;

1sqlda->version = SQLDA_VERSION1;

/* Prepare the UPDATE statement for execution. */

isc_dsql_prepare(

status_vector,

&tr_handle,

&ustmt,

0,

upd_str,

1,

NULL);

Return_if_Error(status_vector);

/* Initialize the input XSQLDA. */

isc_dsql_describe_bind(

status_vector, &ustmt, 1, isqlda);

Return_if_Error(status_vector);

USING FUNCTION DEFINITIONS

API GUIDE 225

/* Set up the input sqldata and sqlind fields. */

isqlda->sqlvar[0].sqldata = (char *) &array_id;

isqlda->sqlvar[0].sqlind = &flag2;

/* Set up the array descriptor. */

isc_array_lookup_desc(

status_vector,

&database_handle, /* Set by previous isc_attach_database() call. */

&tr_handle, /* Set by previous isc_start_transaction() call. */

"PROJ_DEPT_BUDGET", /* Table name. */

"QUARTERLY_HEAD_CNT", /* Array column name. */

&desc);

Return_if_Error(status_vector);

/* Set the descriptor bounds to those of the slice to be updated, that

is, to those of the last two elements. Assuming the array column was

defined to contain 4 elements, with a lower bound (subscript) of 1 and

an upper bound of 4, the last two elements are at subscripts 3 and 4. */

desc->array_desc_bounds[0].array_bound_lower = 3;

desc->array_desc_bounds[0].array_bound_upper = 4;

/* Fetch and process the rows of interest. */

while ((fetch_stat = isc_dsql_fetch(

status_vector, &stmt, 1, osqlda)) == 0)

{

if (!flag1)

{

/* There is array data; get values for last two quarters. */

len = sizeof(hcnt);

/* Fetch the data from the array slice into hcnt array. */

isc_array_get_slice(

status_vector,

&database_handle,

&tr_handle,

&array_id,

&desc,

hcnt,

&len);

Return_if_Error(status_vector);

/* Add 1 to each count. */

CHAPTER 12 API FUNCTION REFERENCE

226 INTERBASE 5

for (i = 0; i < 2; i++)

hcnt[i] = hcnt[i] + 1;

/* Save new values. */

isc_array_put_slice(

status_vector,

&database_handle,

&tr_handle,

&array_id,

&desc,

hcnt,

&len);

Return_if_Error(status_vector);

/* Update the array ID. */

isc_dsql_execute(

status_vector, &tr_handle, &ustmt, 1, isqlda);

Return_if_Error(status_vector);

};

};

if (fetch_stat != 100L)

{

SQLCODE = isc_sqlcode(status_vector);

isc_print_sqlerror(SQLCODE, status_vector);

return(1);

}

Return Value isc_array_put_slice() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to isc_bad_stmt_handle,
isc_bad_trans_handle, or another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_array_get_slice(), isc_array_lookup_bounds(), isc_array_lookup_desc(),
isc_array_set_desc(), isc_dsql_allocate_statement(), isc_dsql_describe_bind(),
isc_dsql_execute(), isc_dsql_fetch(), isc_dsql_prepare(),
isc_dsql_set_cursor_name()

USING FUNCTION DEFINITIONS

API GUIDE 227

isc_array_set_desc()
Initializes an array descriptor.

Syntax ISC_STATUS isc_array_get_slice(

ISC_STATUS *status_vector,

char *table_name,

char *column_name,

short *sql_dtype,

short *sql_length,

short *dimensions,

ISC_ARRAY_DESC *desc);

Description isc_array_set_desc() initializes the array descriptor, desc, from the function parameters,
table_name, column_name, sql_dtype, sql_length, and dimensions.

isc_array_set_desc() also sets to 0 a flag in the descriptor. This specifies that the array is
accessed in future function calls in row-major order, the default. If an application requires
column-major access, reset this flag to 1.

table_name and column_name can be either null-terminated or blank-terminated. The
names stored in the descriptor will be null-terminated.

sql_dtype must be given as an SQL macro constant.

The array descriptor is used in subsequent calls to isc_array_get_slice() or
isc_array_put_slice().

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

table_name char * Blank- or null-terminated name of the table
containing the array column, column_name

column_name char * Name of the array column; this may be either
null-terminated or blank-terminated

sql_dtype short * Pointer to SQL datatype of the array elements

sql_length short * Pointer to length of each array element

dimensions short * Pointer to number of array dimensions

desc ISC_ARRAY_DESC * Array descriptor to be filled in by this function

CHAPTER 12 API FUNCTION REFERENCE

228 INTERBASE 5

For a detailed description of the array descriptor, see Chapter 8, “Working with Array
Data.”

Note There are ways to fill in an array descriptor other than by calling isc_array_set_desc().
You can also:

g Call isc_array_lookup_bounds(). This function is similar to isc_array_lookup_desc(), except that
isc_array_lookup_bounds() also fills in information about the upper and lower bounds of
each dimension.

g Call isc_array_lookup_desc(). This function is similar to isc_array_lookup_bounds(), except that
isc_array_lookup_desc() does not fill in information about the upper and lower bounds of
each dimension.

g Set the descriptor fields directly. Note that array_desc_dtype must be expressed as one of
the datatypes in the following table, and the
parameters, array_desc_field_name, and array_desc_relation_name, must be
null-terminated:

array_desc_dtype Corresponding InterBase datatype

blr_text CHAR

blr_text2 CHAR

blr_short SMALLINT

blr_long INTEGER

blr_quad ISC_QUAD structure

blr_float FLOAT

blr_double DOUBLE PRECISION

blr_date DATE

blr_varying VARCHAR

blr_varying2 VARCHAR

blr_blob_id ISC_QUAD structure

blr_cstring NULL-terminated string

blr_cstring2 NULL-terminated string

TABLE 12.15 Datatypes for array descriptor fields

USING FUNCTION DEFINITIONS

API GUIDE 229

Example The following illustrates a sample call to isc_array_set_desc(). More complete examples of
accessing arrays are found in the example programs for isc_array_get_slice() and
isc_array_put_slice().

#include <ibase.h>

ISC_STATUS status_vector[20];

ISC_ARRAY_DESC desc;

short dtype = SQL_TEXT;

short len = 8;

short dims = 1;

isc_array_set_desc(

status_vector,

"TABLE1",

"CHAR_ARRAY",

&dtype,

&len,

&dims,

&desc);

if (status_vector[0] == 1 && status_vector[1])

{

/* Process error. */

isc_print_status(status_vector);

return(1);

}

Return Value isc_array_set_desc() returns the second element of the status vector. Zero indicates success.
A nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_array_get_slice(), isc_array_lookup_bounds(), isc_array_lookup_desc(),
isc_array_put_slice()

CHAPTER 12 API FUNCTION REFERENCE

230 INTERBASE 5

isc_attach_database()
Attaches to an existing database.

Syntax ISC_STATUS isc_attach_database(

ISC_STATUS *status_vector,

short db_name_length,

char *db_name,

isc_db_handle *db_handle,

short parm_buffer_length,

char *parm_buffer);

Description The isc_attach_database() function connects to an existing database to enable subsequent
program access. It also optionally specifies various operational characteristics, such as a
user name and password combination for access to a database on a remote server, or the
number of database cache buffers to use. These optional characteristics are passed in a
database parameter buffer (DPB) supplied and populated by the calling program, either
through direct program construction, and by calling isc_expand_dpb() to build the DPB.

A program passes the name of the database file to which to attach in db_name. For
programs not written in C, the program must also pass the length, in bytes, of db_name
in the db_name_length parameter. C programs should pass a 0 length in this parameter.

If successful, isc_attach_database() assigns a unique ID to db_handle. Subsequent API calls
use this handle to identify the database against which they operate.

When finished accessing a database, disconnect from the database with
isc_detach_database().

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

db_name_length short Number of bytes in db_name string; if 0, the string is
assumed to be null-terminated

db_name char * Database name

db_handle isc_db_handle * Pointer to a database handle set by this function;

It is recommended that you set db_handle to NULL before
passing it to isc_attach_database()

parm_buffer_length short Number of bytes in the database parameter buffer (DPB)

parm_buffer char * Address of the DPB

USING FUNCTION DEFINITIONS

API GUIDE 231

Example The following program fragment attaches to a database named employee.db. In the
parameter buffer, it specifies a user name and password. These come from the contents
of char * variables named user_name and user_password, respectively.

char dpb_buffer[256], *dpb, *p;

ISC_STATUS status_vector[20];

isc_db_handle handle = NULL;

short dpb_length;

/* Construct the database parameter buffer. */

dpb = dpb_buffer;

*dpb++ = isc_dpb_version1;

*dpb++ = isc_dpb_user_name;

*dpb++ = strlen(user_name);

for (p = user_name; *p;)

*dpb++ = *p++;

*dpb++ = isc_dpb_password;

*dpb++ = strlen(user_password);

for (p = user_password; *p;)

*dpb++ = *p++;

/* An alternate choice for the above construction is to call:

isc_expand_dpb(). */

dpb_length = dpb - dpb_buffer;

isc_attach_database(

status_vector,

0,

"employee.db",

&handle,

dpb_length,

dpb_buffer);

if (status_vector[0] == 1 && status_vector[1])

{

/* An error occurred. */

isc_print_status (status_vector);

return(1);

}

CHAPTER 12 API FUNCTION REFERENCE

232 INTERBASE 5

Return Value isc_attach_database() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_detach_database(), isc_expand_dpb()

For more information about creating and populating a DPB, see “Creating and
populating a DPB” on page 42. For more information about attaching to a database, see
“Connecting to databases” on page 40.

isc_blob_default_desc()
Loads a data structure with default information about a Blob, including its subtype,
character set, and segment size.

void isc_blob_default_desc(

ISC_BLOB_DESC *desc,

unsigned char *table_name,

unsigned char *column_name);

Description isc_blob_default_desc() loads a Blob descriptor, desc, with the specified table_name and
column_name, and the following default values prior to calling isc_blob_gen_bpb() to
generate a Blob parameter buffer (BPB) for the Blob column being accessed:

g Subtype is set to TEXT.

g Character set is set to the default character set for the process or database.

g Segment size is set to 80 bytes.

Parameter Type Description

desc ISC_BLOB_DESC * Pointer to a Blob descriptor

table_name unsigned char * Table name

column_name unsigned char * Blob column name

USING FUNCTION DEFINITIONS

API GUIDE 233

isc_blob_default_desc() and three related functions, isc_blob_gen_bpb(), isc_blob_lookup_desc(),
and isc_blob_set_desc(), provide dynamic access to Blob information. In particular, these
functions can define and access information about a Blob for filtering purposes, such as
character set information for text Blob data, and subtype information for text and
non-text Blob data.

The following table lists the fields in the desc structure:

Example The following fragment loads the Blob descriptor with default information:

typedef struct

{

short blob_desc_subtype;

short blob_desc_charset;

short blob_desc_segment_size;

unsigned char blob_desc_field_name[32];

unsigned char blob_desc_relation_name[32];

ISC_BLOB_DESC;

isc_blob_default_desc(&desc, &relation, &field);

Return Value None.

See Also isc_blob_gen_bpb(), isc_blob_lookup_desc(), isc_blob_set_desc()

For more information about Blob descriptors, see Chapter 7, “Working with Blob
Data.”

Parameter Type Description

blob_desc_subtype short Subtype of the Blob filter

blob_desc_charset short Character set being used

blob_desc_segment_size short Blob segment size

blob_desc_field_name [32] char Array containing the name of the Blob column

blob_desc_relation_name [32] char Array containing the name of the table in which the
Blob is stored

TABLE 12.16 Blob descriptor fields

CHAPTER 12 API FUNCTION REFERENCE

234 INTERBASE 5

isc_blob_gen_bpb()
Generates a Blob parameter buffer (BPB) to allow dynamic access to Blob subtype and
character set information.

Syntax ISC_STATUS isc_blob_gen_bpb(

ISC_STATUS *status_vector,

ISC_BLOB_DESC *to_desc,

ISC_BLOB_DESC *from_desc,

unsigned short bpb_buffer_length,

unsigned char *bpb_buffer,

unsigned short *bpb_length);

Description isc_blob_gen_bpb() generates a Blob parameter buffer (BPB) from subtype and character
set information stored in the source Blob descriptor from_desc and the target
(destination) Blob descriptor to_desc.

A BPB is needed whenever a filter will be used when writing to or reading from a Blob
column. Two Blob descriptors are needed for filtering: one (from_desc) to describe the
filter source data, and the other (to_desc) to describe the destination. The descriptors
must have been previously created either directly, or via a call to isc_blob_default_desc(),
isc_blob_lookup_desc(), or isc_blob_set_desc().

The BPB generated by isc_blob_gen_bpb() is subsequently needed in calls to isc_open_blob2()
or isc_create_blob2() if filtering will be utilized. For more information about the BPB, see
Chapter 7, “Working with Blob Data.”

Example The following fragment generates the Blob descriptor:

isc_blob_gen_bpb(status, &to_desc, &from_desc, bpb_length, &buffer,

&buf_length);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

to_desc ISC_BLOB_DESC * Pointer to the target Blob descriptor

from_desc ISC_BLOB_DESC * Pointer to the source Blob descriptor

bpb_buffer_length unsigned short Length of the BPB bpb_buffer

bpb_buffer unsigned char * Pointer to the BPB

bpb_length unsigned short * Pointer to the length of the data stored into the BPB

USING FUNCTION DEFINITIONS

API GUIDE 235

Return Value isc_blob_gen_bpb() returns the second element of the status vector. Zero indicates success.
A nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_blob_default_desc(), isc_blob_lookup_desc(), isc_blob_set_desc(),
isc_create_blob2(), isc_open_blob2()

isc_blob_info()
Returns information about an open Blob.

Syntax ISC_STATUS isc_blob_info(

ISC_STATUS *status_vector,

isc_blob_handle *blob_handle,

short item_list_buffer_length,

char *item_list_buffer,

short result_buffer_length,

char *result_buffer);

Description isc_blob_info() returns information about an existing Blob specified by blob_handle. The
item-list buffer is an unstructured byte vector. An application lists the items about which
it wants information in the item-list buffer.

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

blob_handle isc_blob_handle * Pointer to the Blob

item_list_buffer_length short Length of the item-list buffer in which you specify
the items for which you want information

item_list_buffer char * Pointer to the item-list buffer

result_buffer_length short Length of the result buffer into which InterBase
returns the requested information

result_buffer char * Pointer to the result buffer

CHAPTER 12 API FUNCTION REFERENCE

236 INTERBASE 5

InterBase returns the requested information to the result buffer as a series of clusters of
information, one per item requested. Each cluster consists of three parts:

1. A one-byte item type. Each is the same as one of the item types in the item-list
buffer.

2. A 2-byte number specifying the number of bytes that follow in the remainder
of the cluster.

3. A value, stored in a variable number of bytes, whose interpretation depends
on the item type.

A calling program is responsible for interpreting the contents of the result buffer and for
deciphering each cluster as appropriate.

For a list of items that can be requested and returned, see Chapter 7, “Working with
Blob Data.”

Example The following example retrieves information about the current open Blob:

static char blob_items[] = {

isc_info_blob_max_segment,

isc_info_blob_num_segments,

isc_info_blob_type};

CHAR blob_info[32];

isc_open_blob2(status_vector, &db, &tr_handle, &blob_handle,

&blob_id, blength, baddr)

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector);

return(1);

}

isc_blob_info(status_vector, &blob_handle, sizeof(blob_items),

blob_items, sizeof(blob_info), blob_info));

Return Value isc_blob_info() returns the second element of the status vector. Zero indicates success. A
nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_create_blob2(), isc_open_blob2()

USING FUNCTION DEFINITIONS

API GUIDE 237

isc_blob_lookup_desc()
Determines the subtype, character set, and segment size of a Blob, given a table name
and Blob column name.

Syntax ISC_STATUS isc_blob_lookup_desc(

ISC_STATUS *status_vector,

isc_db_handle **db_handle,

isc_tr_handle **trans_handle,

unsigned char *table_name,

unsigned char *column_name,

ISC_BLOB_DESC *desc,

unsigned char *global);

Description isc_blob_lookup_desc() uses the system tables of a database to determine the subtype,
character set, and segment size of a Blob given a table name and Blob column name.

isc_blob_lookup_desc() and three related functions, isc_blob_default_desc(), isc_blob_gen_bpb(),
and isc_blob_set_desc() provide dynamic access to Blob information. In particular, you can
use these functions to define and access information about Blob data for filtering
purposes, such as character set information for text Blob data, and subtype information
for text and non-text Blob data.

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

db_handle isc_db_handle ** Pointer to a database handle set by a previous call to
isc_attach_database()

db_handle returns an error in status_vector if it is NULL

trans_handle isc_tr_handle ** Pointer to a transaction handle whose value has been set by
a previous isc_start_transaction() call; trans_handle returns
an error if NULL

table_name unsigned char * Name of the table containing the Blob column

column_name unsigned char * Name of the Blob column

desc ISC_BLOB_DESC * Pointer to the Blob descriptor to which the function returns
information

global unsigned char * Global column name, returned by this function

CHAPTER 12 API FUNCTION REFERENCE

238 INTERBASE 5

isc_blob_lookup_desc() stores the requested information about the Blob into the desc Blob
descriptor structure. The following table describes the desc structure:

Example The following fragment retrieves information into a Blob descriptor:

isc_blob_lookup_desc(status, &db_handle, &tr_handle, &relation_name,

&field_name, desc, &global);

Return Value isc_blob_lookup_desc() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.To
check for an InterBase error, examine the first two elements of the status vector directly.
For more information about examining the status vector, see Chapter 10, “Handling
Error Conditions.”

See Also isc_blob_default_desc(), isc_blob_gen_bpb(), isc_blob_set_desc()

For more information about Blob descriptors, see Chapter 7, “Working with Blob
Data.”

Parameter Type Description

blob_desc_subtype short Subtype of the Blob filter

blob_desc_charset short Character set being used

blob_desc_segment_size short Blob segment size

blob_desc_field_name [32] char Array containing the name of the Blob column

blob_desc_relation_name [32] char Array containing the name of the table in which the
Blob is stored

TABLE 12.17 Blob descriptor fields

USING FUNCTION DEFINITIONS

API GUIDE 239

isc_blob_set_desc()
Sets the subtype and character set for a Blob.

Syntax ISC_STATUS isc_blob_set_desc(

ISC_STATUS *status_vector,

unsigned char *table_name,

unsigned char *column_name,

short subtype,

short charset,

short segment_size,

ISC_BLOB_DESC *desc);

Description isc_blob_set_desc() sets the Blob column name, table name, subtype, segment size, and
character set for a Blob column to values specified by the application. To set these
values to InterBase defaults, use isc_blob_default_desc().

isc_blob_set_desc() and three related functions, isc_blob_default_desc(), isc_blob_gen_bpb(), and
isc_blob_lookup_desc() provide dynamic access to Blob data. In particular, you can use these
functions to define and access information about Blob data for filtering purposes, such
as character set information for text Blob data, and subtype information for text and
non-text Blob data.

You can manually set the subtype and character set information (for a TEXT subtype) in
a Blob descriptor, by way of a call to isc_blob_set_desc(). Pass the subtype, character set,
and segment size to the Blob descriptor in your application.

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

table_name unsigned char * Name of the table containing the Blob column

column_name unsigned char * Name of the Blob column in the table

subtype short Specifies the subtype of the Blob; value are:

• InterBase-defined subtype values, 0 or 1 (TEXT)
• User-defined subtypes, –1 to –32768

charset short Specifies the character set for the Blob

segment_size short Specifies the segment size for the Blob

desc ISC_BLOB_DESC * Pointer to a Blob descriptor to populate.

CHAPTER 12 API FUNCTION REFERENCE

240 INTERBASE 5

isc_blob_set_desc() is useful for setting the contents of the Blob descriptor without querying
the system tables for the information. Calls to this function also let an application specify
character set and subtype for custom filtering operations.

Note Do not call this function while running against a V3.x database.

Example The following example sets the default values for a tour guide application, including
subtype, character set, and segment size:

isc_blob_set_desc(status, "TOURISM", "GUIDEBOOK", 1, 2, 80, &desc);

Return Value isc_blob_set_desc() returns the second element of the status vector. Zero indicates success.
A nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_blob_default_desc(), isc_blob_gen_bpb(), isc_blob_lookup_desc()

For more information about Blob descriptors, see Chapter 7, “Working with Blob
Data.”

isc_cancel_blob()
Discards a Blob, frees internal storage used by the Blob, and sets the Blob handle to NULL.

Syntax ISC_STATUS isc_cancel_blob(

ISC_STATUS *status_vector,

isc_blob_handle *blob_handle);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

blob_handle isc_blob_handle * Pointer to the handle for the Blob you want to cancel; sets
the handle to zero and returns a successful result even if
the handle is NULL.

USING FUNCTION DEFINITIONS

API GUIDE 241

Description InterBase temporarily stores Blob data in the database during create operations. If, for
some reason, you do not, or cannot, close a Blob, the storage space remains allocated in
the database and InterBase does not set the handle to NULL. Call isc_cancel_blob() to
release the temporary storage in the database, and to set blob_handle to NULL. If you
close the Blob in the normal course of your application processing logic, this step is
unnecessary as InterBase releases system resources on a call to isc_close_blob().

Note A call to this function does not produce an error when the handle is NULL.
Therefore, it is good practice to call isc_cancel_blob() before creating or opening a Blob to
clean up existing Blob operations.

Example The following fragment cancels any open Blob before creating a new one:

isc_cancel_blob(status_vector, &blob_handle);

if (status_vector[0] == 1 && status_vector[1])

{

/* process error */

isc_print_status(status_vector);

return(1);

}

isc_create_blob(status_vector, &DB, &trans, &blob_handle, &blob_id)

Return Value isc_cancel_blob() returns the second element of the status vector. Zero indicates success. A
nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_close_blob()

CHAPTER 12 API FUNCTION REFERENCE

242 INTERBASE 5

isc_cancel_events()
Cancels an application’s interest in asynchronous notification of any of a specified group
of events.

Syntax ISC_STATUS isc_cancel_events(

ISC_STATUS *status_vector,

isc_db_handle *db_handle,

ISC_LONG *event_id);

Description isc_cancel_events() cancels an application program’s asynchronous wait for any of a
specified list of events. The events are the ones that were associated with event_id as a
result of a previous call to isc_que_events().

Example The following call cancels a program’s wait for events associated with event_id, where
event_id was previously returned from a call to isc_que_events():

isc_cancel_events(status_vector, &database_handle, &event_id);

A more complete example is provided in the section on isc_que_events().

Return Value isc_cancel_events() returns the second element of the status vector. Zero indicates success.
A nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_que_events()

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

db_handle isc_db_handle * Pointer to a database handle set by a previous call to
isc_attach_database(); the handle identifies the database for
which the event watch is to be canceled.

db_handle returns an error in status_vector if it is NULL

event_id ISC_LONG * Pointer to the event or events to cancel; set by a previous call
to isc_que_events()

USING FUNCTION DEFINITIONS

API GUIDE 243

isc_close_blob()
Closes an open Blob, which involves flushing any remaining segments, releasing system
resources associated with Blob update or retrieval, and setting the Blob handle to zero.

Syntax ISC_STATUS isc_close_blob(

ISC_STATUS *status_vector,

isc_blob_handle *blob_handle);

Description isc_close_blob() is used to store a Blob in the database and clean up after Blob operations.
Close any Blob after reading from or writing to it. If, for some reason, your application
does not close a Blob, you can lose data. If your application might open a Blob without
closing it then you should call isc_cancel_blob() to make sure that the application does not
try to open a
Blob that is already open.

blob_handle is set by a call to isc_create_blob2() or to isc_open_blob2().

Example The following example closes a Blob and frees system resources:

if (status_vector[1] == isc_segstr_eof)

isc_close_blob(status_vector, &blob_handle)

Return Value isc_close_blob() returns the second element of the status vector. Zero indicates success. A
nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_cancel_blob(), isc_create_blob2(), isc_open_blob2()

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

blob_handle isc_blob_handle * Pointer to the handle of the Blob to close

CHAPTER 12 API FUNCTION REFERENCE

244 INTERBASE 5

isc_commit_retaining()
Commits an active transaction and retains the transaction context after a commit.

Syntax ISC_STATUS isc_commit_retaining(

ISC_STATUS *status_vector,

isc_tr_handle *trans_handle);

Description isc_commit_retaining() commits an active transaction and immediately clones itself. This
means that the function retains the transaction name, system resources associated with
the transaction, and the current state of any open cursors in the transaction. Although
the function is actually initiating a new transaction, by assigning the new transaction the
active transaction handle it is, in effect, keeping the transaction open across commits.
This results in improved performance by allowing an application to minimize the
overhead of initiating additional transactions. isc_commit_retaining() allows you to commit
updates while keeping a cursor open.

You can initiate a rollback within the active transaction but the rollback only affects
uncommitted updates. In other words, a rollback is legal, even after the transaction
context has been passed to the cloned transaction, but, in that case, the rollback will only
affect the updates your application has made to the database since the last commit.

To audit the commits made by your calls to this function, check the first element in the
status vector to see if the call was successful. If this element contains a zero, the call was
successful.

The transaction ends when you commit without using the retention feature, such as with
a call to isc_commit_transaction(), or when you roll back with isc_rollback_transaction().

Example The following call commits a transaction, prints a message, and starts a new transaction
with the same handle within the same request:

if (!isc_commit_retaining(status, &retained_trans))

{

fprintf("Committed and retained\\n");

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been set by
a previous isc_start_transaction() call; trans_handle returns
an error if NULL

USING FUNCTION DEFINITIONS

API GUIDE 245

isc_print_status(status);

}

The following call commits a transaction, prints a confirmation message, starts a new
transaction with the same handle within the same request, or, if the commit fails, prints
an error message and rolls back.

isc_commit_retaining(status, &retained_trans);

if (status[0] == 1 && status[1])

{

fprintf("An error occurred during commit, rolling back.");

rb_status = isc_rollback_transaction(status, &retained_status);

}

else

{

fprintf("Commit successful.");

tr_count++; /*Increments the number of commits. */

}

Return Value isc_commit_retaining() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_commit_transaction(), isc_rollback_transaction(), isc_start_transaction()

CHAPTER 12 API FUNCTION REFERENCE

246 INTERBASE 5

isc_commit_transaction()
Commits a specified active transaction.

Syntax ISC_STATUS isc_commit_transaction(

ISC_STATUS *status_vector,

isc_tr_handle *trans_handle);

Description isc_commit_transaction() closes record streams, frees system resources, and sets the
transaction handle to zero for the specified transaction.

When you call this function to execute a commit operation against multiple databases,
InterBase first initiates a call to the isc_prepare_transaction() function. isc_prepare_transaction()
executes the first phase of a two-phase commit. This puts the transaction into limbo and
signals your intention to commit, so that InterBase can poll all target databases to verify
that they are ready to accept the commit. Also, isc_commit_transaction() writes a Blob
message to the RDB$TRANSACTION_DESCRIPTION column of the RDB$TRANSACTIONS system
table, detailing information required by InterBase to perform a reconnect in case of
system failure during the commit process.

The isc_commit_transaction() function also performs the second phase of a two-phase
commit upon receiving verification that all databases are ready to accept the commit.
Also, isc_commit_transaction() cleans up RDB$TRANSACTIONS.

Example The following call commits a transaction and prints a message:

isc_commit_transaction(status, &trans);

if (status[0] == 1 && status[1])

{

fprintf("Error on write\\n");

isc_print_status(status);

}

Return Value isc_commit_transaction() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been set by
a previous isc_start_transaction() call; trans_handle returns
an error if NULL

USING FUNCTION DEFINITIONS

API GUIDE 247

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_commit_retaining(), isc_prepare_transaction()

isc_create_blob2()
Creates and opens the Blob for write access, and optionally specifies the filters to be used
to translate the Blob from one subtype to another.

Syntax ISC_STATUS isc_create_blob2(

ISC_STATUS *status_vector,

isc_db_handle *db_handle,

isc_tr_handle *trans_handle,

isc_blob_handle *blob_handle,

ISC_QUAD *blob_id,

short bpb_length,

char *bpb_address);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

db_handle isc_db_handle * Pointer to a database handle set by a previous call to
isc_attach_database()

db_handle returns an error in status_vector if it is NULL

trans_handle isc_tr_handle * Pointer to the handle of the transaction in which you want
the Blob to be created

blob_handle isc_blob_handle * Pointer to the Blob handle

blob_id ISC_QUAD * Pointer to the 64-bit system-defined Blob ID, which is
stored in a field in the table and points to the first segment
of the Blob or to a page of pointers to Blob fragments

bpb_length short Length of the Blob parameter buffer (BPB)

bpb_address char * Pointer to the BPB

CHAPTER 12 API FUNCTION REFERENCE

248 INTERBASE 5

Description isc_create_blob2() creates a context for storing a Blob, opens a Blob for write access, and
optionally specifies the filters used to translate from one Blob format to another.
Subsequent calls to isc_put_segment() write data from an application buffer to the Blob.

If a Blob filter is used, it is called for each segment written to the Blob. InterBase selects
the filter to be used based on the source and target subtypes specified in a previously
populated Blob parameter buffer (BPB), pointed to by bpb_address.

Note Blob filters are not supported on Netware.

If a Blob filter is not needed or cannot be used, a BPB is not needed; pass 0 for bpb_length
and NULL for bpb_address.

The Blob handle pointed to by blob_handle must be zero when isc_create_blob2() is called.
To reuse blob_handle, close the Blob with a call to isc_close_blob() to zero out the handle
before calling isc_create_blob2().

On success, isc_create_blob2() assigns a unique ID to blob_handle, and a Blob identifier to
blob_id. Subsequent API calls require one or both of these to identify the Blob against
which they operate.

After a blob is created, data can be written to it by a sequence of calls to isc_put_segment().
When finished writing to the Blob, close it with isc_close_blob().

When you create a Blob, it is essentially an “orphan” until you assign its blob_id to a
particular Blob column of a particular row of a table. You do this, after closing the Blob,
by using DSQL to execute either an INSERT statement to insert a new row containing the
Blob (and any other columns desired), or an UPDATE statement to replace an existing Blob
with the new one.

For more information about BPBs and Blob filters, see Chapter 7, “Working with Blob
Data.”

Example The following fragment declares a BPB, populates it with filter information, then creates
a Blob and passes the BPB:

isc_blob_handle blob_handle; /* declare at beginning */

ISC_QUAD blob_id; /* declare at beginning */

char bpb[] = {

isc_bpb_version1,

isc_bpb_target_type,

1, /* # bytes that follow which specify target subtype */

1, /* target subtype (TEXT) */

isc_bpb_source_type,

1, /* # bytes that follow which specify source subtype */

-4, /* source subtype*/

};

USING FUNCTION DEFINITIONS

API GUIDE 249

. . .

isc_create_blob2(

status_vector,

&db_handle,

&tr_handle,

&blob_handle, /* to be filled in by this function */

&blob_id, /* to be filled in by this function */

actual_bpb_length, /* length of BPB data */

&bpb /* Blob parameter buffer */

)

Return Value isc_create_blob2() returns the second element of the status vector. Zero indicates success.
A nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_blob_gen_bpb(), isc_open_blob2(), isc_put_segment()

CHAPTER 12 API FUNCTION REFERENCE

250 INTERBASE 5

isc_database_info()
Reports requested information about a previously attached database.

Syntax ISC_STATUS isc_database_info(

ISC_STATUS *status_vector,

isc_db_handle *db_handle,

short item_list_buffer_length,

char *item_list_buffer,

short result_buffer_length,

char *result_buffer);

Description isc_database_info() returns information about an attached database. Typically,
isc_database_info() is called to:

g Determine how much space is used for page caches. The space is the product of the
number of buffers and the page size, which are determined by calling isc_database_info()
with the isc_info_num_buffers and isc_info_page_size item-list options.

g Monitor performance. For example, to compare the efficiency of two update strategies,
such as updating a sorted or unsorted stream.

The calling program passes its request for information through the item-list buffer
supplied by the program, and InterBase returns the information to a program-supplied
result buffer.

Example The following program fragment requests the page size and the number of buffers, then
examines the result buffer to retrieve the values supplied by the InterBase engine:

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector.

db_handle isc_db_handle * Pointer to a database handle set by a previous call
to isc_attach_database()

db_handle returns an error in status_vector if it is
NULL

item_list_buffer_length short Number of bytes in the item-list buffer.

item_list_buffer char * Address of the item-list buffer.

result_buffer_length short Number of bytes in the result buffer.

result_buffer char * Address of the result buffer.

USING FUNCTION DEFINITIONS

API GUIDE 251

char db_items[] = {

isc_info_page_size, isc_info_num_buffers,

isc_info_end};

char res_buffer[40], *p, item;

int length;

SLONG page_size = 0L, num_buffers = 0L;

ISC_STATUS status_vector[20];

isc_database_info(

status_vector,

&handle, /* Set in previous isc_attach_database() call. */

sizeof(db_items),

db_items,

sizeof(res_buffer),

res_buffer);

if (status_vector[0] == 1 && status_vector[1])

{

/* An error occurred. */

isc_print_status(status_vector);

return(1);

};

/* Extract the values returned in the result buffer. */

for (p = res_buffer; *p != isc_info_end ;)

{

item = *p++;

length = isc_vax_integer (p, 2);

p += 2;

switch (item)

{

case isc_info_page_size:

page_size = isc_vax_integer (p, length);

break;

case isc_info_num_buffers:

num_buffers = isc_vax_integer (p, length);

break;

default:

break;

}

p += length;

};

CHAPTER 12 API FUNCTION REFERENCE

252 INTERBASE 5

Return Value isc_database_info() returns the second element of the status vector. Zero indicates success.
A nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_attach_database(), isc_detach_database()

For more information about requesting database attachment information, see
“Requesting information about an attachment” on page 49.

isc_decode_date()
Translates a date from InterBase ISC_QUAD format into the C tm format.

Syntax void isc_decode_date(

ISC_QUAD *ib_date,

void *tm_date);

Description isc_decode_date() translates a date retrieved from a table and stored in an ISC_QUAD
variable, ib_date, into a C time structure for program manipulation. Both ib_date and
tm_date must be declared and initialized before use.

Use the isc_dsql family of API calls to retrieve InterBase DATE data from a table into the
ISC_QUAD structure prior to translation.

Example The following code fragment illustrates declaring time structures and calling
isc_decode_date() to translate an InterBase date format into a C time format:

#include <time.h>

#include <ibase.h>

. . .

struct tm hire_time;

ISC_QUAD hire_date;

. . .

Parameter Type Description

ib_date ISC_QUAD * Pointer to an eight-byte ISC_QUAD structure containing a
date in InterBase format.

tm_date void * Pointer to a C tm structure.

USING FUNCTION DEFINITIONS

API GUIDE 253

/* Retrieve DATE data from a table here. */

. . .

isc_decode_date(&hire_date, &hire_time);

Return Value None.

See Also isc_encode_date()

isc_delete_user()
Deletes a user record from the password database, isc4.gdb.

Syntax ISC_STATUS isc_delete_user(

ISC_STATUS *status

USER_SEC_DATA *user_sec_data);

Description The three security functions, isc_add_user(), isc_delete_user(), and isc_modify_user() mirror
functionality that is available in the gsec command-line utility. isc_delete_user() deletes a
record from isc4.gdb, InterBase’s password database.

At a minimum, you must provide the user name. If the server is not local, you must
provide both a server name and a protocol. Valid choices for the protocol field are
sec_protocol_tcpip, sec_protocol_netbeui, sec_protocol_spx, and sec_protocol_local.

InterBase reads the settings for the ISC_USER and ISC_PASSWORD environment variables if
you do not provide a DBA user name and password.

The definition for the USER_SEC_DATA struct in ibase.h is as follows:

typedef struct {

short sec_flags; /* which fields are specified */

int uid; /* the user’s id */

int gid; /* the user’s group id */

int protocol; /* protocol to use for connection */

char *server; /* server to administer */

char *user_name; /* the user’s name */

char *password; /* the user’s password */

Parameter Type Description

status vector ISC_STATUS * Pointer to the error status vector.

user_sec_data USER_SEC_DATA * Pointer to a struct that is defined in ibase.h.

CHAPTER 12 API FUNCTION REFERENCE

254 INTERBASE 5

char *group_name; /* the group name */

char *first_name; /* the user’s first name */

char *middle_name; /* the user’s middle name */

char *last_name; /* the user’s last name */

char *dba_user_name; /* the dba user name */

char *dba_password; /* the dba password */

} USER_SEC_DATA;

When you pass this struct to one of the three security functions, you can tell it which
fields you have specified by doing a bitwise OR of the following values, which are defined
in ibase.h:

sec_uid_spec 0x01

sec_gid_spec 0x02

sec_server_spec 0x04

sec_password_spec 0x08

sec_group_name_spec 0x10

sec_first_name_spec 0x20

sec_middle_name_spec 0x40

sec_last_name_spec 0x80

sec_dba_user_name_spec 0x100

sec_dba_password_spec 0x200

No bit values are available for user name and password, since they are required.

The following error messages exist for this function:

Code Value Description

isc_usrname_too_long 335544747 The user name passed in is greater than 31 bytes

isc_password_too_long 335544748 The password passed in is longer than 8 bytes

isc_usrname_required 335544749 The operation requires a user name

isc_password_required 335544750 The operation requires a password

isc_bad_protocol 335544751 The protocol specified is invalid

isc_dup_usrname_found 335544752 The user name being added already exists in the
security database.

TABLE 12.18 Error messages for user security functions

USING FUNCTION DEFINITIONS

API GUIDE 255

Example The following example deletes a user (“Socks”) from the password database, using the
bitwise OR technique for passing values from the USER_SEC_DATA struct.

{

ISC_STATUS status[20];

USER_SEC_DATA sec;

sec.server = "kennel";

sec.dba_user_name = "sysdba";

sec.dba_password = "masterkey";

sec.protocol = sec_protocol_tcpip;

sec.user_name = "socks";

sec.sec_flags = sec_server_spec

| sec_dba_user_name_spec

| sec_dba_password_name_spec;

isc_delete_user(status, &sec);

/* check status for errors */

if (status[0] == 1 && status[1])

{

switch (status[1]) {

case isc_usrname_too_long:

printf("Security database cannot accept long user names\n");

break;

...

}

}

}

isc_usrname_not_found 335544753 The user name was not found in the security database

isc_error_adding_sec_record 335544754 An unknown error occurred while adding a user

isc_error_deleting_sec_record 335544755 An unknown error occurred while deleting a user

isc_error_modifying_sec_record 335544756 An unknown error occurred while modifying a user

isc_error_updating_sec_db 335544757 An unknown error occurred while updating the security
database

Code Value Description

TABLE 12.18 Error messages for user security functions

CHAPTER 12 API FUNCTION REFERENCE

256 INTERBASE 5

Return Value isc_delete_user() returns the second element of the status vector. Zero indicates success. A
nonzero value indicates an error. See the “Description” section for this function for a list
of error codes. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_add_user(), isc_modify_user()

isc_detach_database()
Detaches from a database previously connected with isc_attach_database().

Syntax ISC_STATUS isc_detach_database(

ISC_STATUS *status_vector,

isc_db_handle *db_handle);

Description isc_detach_database() detaches an attached database. Call this function to release system
resources when you are done using a database or before re-attaching the database with
different attach parameters. isc_detach_database() also releases the buffers and structures
that control the remote interface on the client and the remote server where the database
is stored.

Before calling isc_detach_database() commit or roll back transactions affecting the database
from which you want to detach.

Example The following conditional statement detaches a database:

if (handle)

isc_detach_database(status_vector, &handle);

Assuming that handle is valid and identifies an attached database, the specified database
is detached when this statement executes.

Return Value isc_detach_database() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

db_handle isc_db_handle * Pointer to a database handle set by a previous call to
isc_attach_database()

db_handle returns an error in status_vector if it is NULL

USING FUNCTION DEFINITIONS

API GUIDE 257

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_attach_database()

isc_drop_database()
Deletes a currently attached database and all of its supporting files, such as secondary
database files, write-ahead log files, and shadow files.

Syntax ISC_STATUS isc_drop_database(

ISC_STATUS *status_vector,

isc_db_handle *db_handle);

Description isc_drop_database() deletes an attached database and all of its supporting files. Call this
routine when you no longer have a use for the database (for example, if you moved all
the data into another database, or if the database was just temporary and is no longer
needed). To succeed, isc_drop_database() must be issued when no other processes are
attached to the database.

Example The following conditional statement drops a database:

if (handle)

isc_drop_database(status_vector, &handle);

Assuming that handle is valid and identifies an attached database, the specified database
is dropped when this statement executes.

Return Value isc_drop_database() returns the second element of the status vector. Zero indicates success.
A nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to an InterBase error code.

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

db_handle isc_db_handle * Pointer to a database handle set by a previous call to
isc_attach_database(); the handle identifies the database
containing the array column

db_handle returns an error in status_vector if it is NULL

CHAPTER 12 API FUNCTION REFERENCE

258 INTERBASE 5

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_attach_database()

isc_dsql_allocate_statement()
Allocates a statement handle for subsequent use with other API dynamic SQL (DSQL)
calls.

Syntax ISC_STATUS isc_dsql_allocate_statement(

ISC_STATUS *status_vector,

isc_db_handle *db_handle,

isc_stmt_handle *stmt_handle);

Description isc_dsql_allocate_statement() allocates a statement handle and returns a pointer to it in
stmt_handle. This pointer is passed to isc_dsql_prepare() to associate the statement handle
with a particular DSQL statement for processing.

If a DSQL statement is to be executed multiple times, or if it returns output (other than
the results from a stored procedure), isc_dsql_allocate_statement() or
isc_dsql_alloc_statement2() should be called to allocate a statement handle prior to
preparing and executing the statement with isc_dsql_prepare() and isc_dsql_execute().

Note The function, isc_dsql_allocate_statement(), is very similar to the function,
isc_dsql_alloc_statement2() except that statement handles allocated using
isc_dsql_allocate_statement() are not automatically reset to NULL when the database under
which they are allocated is detached. To reset statement handles automatically, use
isc_dsql_alloc_statement2().

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

db_handle isc_db_handle * Pointer to a database handle set by a previous call to
isc_attach_database()

db_handle returns an error in status_vector if it is NULL

stmt_handle isc_stmt_handle * Pointer to the statement handle to be allocated by this
function; the handle must be NULL when this function is
called, or an error is returned in status_vector

USING FUNCTION DEFINITIONS

API GUIDE 259

When you are done processing a statement, the statement handle can be freed with the
isc_dsql_free_statement() or by calling isc_detach_database().

Example The following program fragment allocates a statement handle for an SQL statement that
will access the database referenced by the database handle, database_handle:

ISC_STATUS status_vector[20];

isc_stmt_handle statement_handle;

statement_handle = NULL; /* Set handle to NULL before allocating it. */

isc_dsql_allocate_statement(

status_vector,

&database_handle, /* Set in previous isc_attach_database() call. */

&statement_handle);

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector); /* Display error message. */

return(1); /* Return now. */

}

/* Call other functions to associate a particular SQL statement

with the statement handle, and to do other operations necessary to

prepare and execute the DSQL statement. Free the statement handle when

it is no longer needed. */

Return Value isc_dsql_allocate_statement() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to isc_bad_stmt_handle,
isc_bad_db_handle, or another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_dsql_alloc_statement2(), isc_dsql_execute(), isc_dsql_free_statement(),
isc_dsql_prepare()

CHAPTER 12 API FUNCTION REFERENCE

260 INTERBASE 5

isc_dsql_alloc_statement2()
Allocates a statement handle for subsequent use with other API dynamic SQL (DSQL)
calls.

Syntax ISC_STATUS isc_dsql_alloc_statement2(

ISC_STATUS *status_vector,

isc_db_handle *db_handle,

isc_stmt_handle *stmt_handle);

Description isc_dsql_alloc_statement2() allocates a statement handle and returns a pointer to it in
stmt_handle. This pointer is passed to isc_dsql_prepare() to associate the statement handle
with a particular DSQL statement for processing.

If a DSQL statement is to be executed multiple times, or if it returns output (other than
the results from a stored procedure), isc_dsql_alloc_statement2() or
isc_dsql_allocate_statement() should be called to allocate a statement handle prior to
preparing and executing the statement with isc_dsql_prepare() and isc_dsql_execute().

Note The function, isc_dsql_allocate_statement2(), is very similar to the function,
isc_dsql_alloc_statement() except that statement handles allocated using
isc_dsql_allocate_statement2() are automatically reset to NULL when the database under
which they are allocated is detached.

Example The following program fragment allocates a statement handle for an SQL statement that
will access the database referenced by the database handle, database_handle:

ISC_STATUS status_vector[20];

isc_stmt_handle statement_handle;

isc_dsql_alloc_statement2(

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

db_handle isc_db_handle * Pointer to a database handle set by a previous call to
isc_attach_database(); the handle identifies the database
containing the array column

db_handle returns an error in status_vector if it is NULL

stmt_handle isc_stmt_handle * Pointer to the statement handle to be allocated by this
function; the handle must be NULL when this function is
called, or an error is returned in status_vector

USING FUNCTION DEFINITIONS

API GUIDE 261

status_vector,

&database_handle, /* Set in previous isc_attach_database() call. */

&statement_handle);

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector); /* Display an error message. */

return(1); /* Return now. */

}

/* Call other functions to associate a particular SQL statement

with the statement handle, and to do other operations necessary to

prepare and execute the DSQL statement. */

;

Return Value isc_dsql_alloc_statement2() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to isc_bad_stmt_handle,
isc_bad_db_handle, or another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_dsql_allocate_statement(), isc_dsql_execute(), isc_dsql_free_statement(),
isc_dsql_prepare()

CHAPTER 12 API FUNCTION REFERENCE

262 INTERBASE 5

isc_dsql_describe()
Provides information about columns retrieved by the execution of a DSQL SELECT or
EXECUTE PROCEDURE statement.

Syntax ISC_STATUS isc_dsql_describe(

ISC_STATUS *status_vector,

isc_stmt_handle *stmt_handle,

unsigned short dialect,

XSQLDA *xsqlda);

Description isc_dsql_describe() stores into xsqlda a description of the columns that make up the rows
returned for a SELECT statement, or a description of the result values returned by an
EXECUTE PROCEDURE statement. These statements must have been previously prepared
for execution with isc_dsql_prepare(), before isc_dsql_describe() can be called.

Note Using isc_dsql_describe() is not necessary unless a previously issued isc_dsql_prepare()
function indicates that there is insufficient room in the output XSQLDA for the return
values of the DSQL statement to be executed.

Example The following program fragment illustrates a sequence of calls which allocates an
XSQLDA, prepares a statement, checks whether or not the appropriate number of
XSQLVARs was allocated, and corrects the situation if needed.

#include <ibase.h>

ISC_STATUS status_vector[20];

XSQLDA *osqlda;

int n;

char *query =

"SELECT * FROM CITIES WHERE STATE = "NY" ORDER BY CITY DESCENDING";

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

stmt_handle isc_stmt_handle * Pointer to a statement handle previously allocated with
isc_dsql_allocate_statement() or
isc_dsql_alloc_statement2(); the handle returns an error in
status_vector if it is NULL

dialect unsigned short Indicates the version of the SQL descriptor area passed to
the function; set this value to 1

xsqlda XSQLDA * Pointer to a previously allocated XSQLDA used for output

USING FUNCTION DEFINITIONS

API GUIDE 263

osqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(3);

osqlda->version = SQLDA_VERSION1;

osqlda->sqln = 3;

isc_dsql_prepare(

status_vector,

&tr_handle, /* Set in previous isc_start_transaction() call. */

&stmt_handle,

 /* Allocated previously by isc_dsql_allocate_statement()

or isc_dsql_alloc_statement2() call. */

0,

query,

1,

osqlda);

if (status_vector[0] == 1 && status_vector[1])

{

/* Process error. */

isc_print_status(status_vector);

return(1);

}

if (osqlda->sqld > osqlda->sqln) /* Need more XSQLVARS. */

{

n = osqlda->sqld;

free(osqlda);

osqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(n);

osqlda->sqln = n;

osqlda->version = SQLDA_VERSION1;

isc_dsql_describe(

status_vector,

&stmt_handle,

1,

osqlda);

if (status_vector[0] == 1 && status_vector[1])

{

/* Process error. */

isc_print_status(status_vector);

return(1);

}

}

CHAPTER 12 API FUNCTION REFERENCE

264 INTERBASE 5

Return Value isc_dsql_describe() returns the second element of the status vector. Zero indicates success.
A nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to isc_bad_stmt_handle, or another
InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_dsql_describe_bind(), isc_dsql_execute(), isc_dsql_execute2(),
isc_dsql_prepare()

For more information about preparing a DSQL statement with return values, see “DSQL
programming methods” on page 94. For more information about creating and
populating the XSQLDA, see “Understanding the XSQLDA” on page 83.

isc_dsql_describe_bind()
Provides information about dynamic input parameters required by a previously prepared
DSQL statement.

Syntax ISC_STATUS isc_dsql_describe_bind(

ISC_STATUS *status_vector,

isc_stmt_handle *stmt_handle,

unsigned short dialect,

XSQLDA *xsqlda);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

stmt_handle isc_stmt_handle * Pointer to a statement handle previously allocated with
isc_dsql_allocate_statement() or
isc_dsql_alloc_statement2(); the handle returns an error in
status_vector if it is NULL

dialect unsigned short Indicates the version of the SQL descriptor area passed to
the function; set this value to 1

xsqlda XSQLDA * Pointer to a previously allocated XSQLDA used for input

USING FUNCTION DEFINITIONS

API GUIDE 265

Description isc_dsql_describe_bind() stores into the input XSQLDA xsqlda information about the
dynamic input parameters required by a DSQL statement previously prepared with
isc_dsql_prepare().

Before an application can execute a statement with input parameters, it must supply
values for them in an input XSQLDA structure. If you know exactly how many parameters
are required, and their datatypes, you can set up the XSQLDA directly without calling
isc_dsql_describe_bind(). But if you need InterBase to analyze the statement and provide
information such as the number of parameters and their datatypes, you must call
isc_dsql_describe_bind() to supply the information.

Example The following program fragment illustrates a sequence of calls that allocates an input
XSQLDA, prepares a DSQL UPDATE statement, calls the function isc_dsql_describe_bind(),
checks whether or not the appropriate number of XSQLVARs was allocated, and corrects
the situation if necessary.

#include <ibase.h>

ISC_STATUS status_vector[20];

XSQLDA *isqlda

int n;

char *str = "UPDATE DEPARTMENT SET BUDGET = ?, LOCATION = ?";

isc_dsql_prepare(

status_vector,

&tr_handle, /* Set in previous isc_start_transaction() call. */

&stmt_handle,

/* Allocated previously by isc_dsql_allocate_statement()

or isc_dsql_alloc_statement2() call. */

0,

str,

1,

NULL);

if (status_vector[0] == 1 && status_vector[1])

{

 /* Process error. */

isc_print_status(status_vector);

return(1);

}

/* Allocate an input XSQLDA. */

isqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(1);

isqlda->version = SQLDA_VERSION1;

isqlda->sqln = 1;

isc_dsql_describe_bind(

CHAPTER 12 API FUNCTION REFERENCE

266 INTERBASE 5

status_vector,

&stmt_handle,

/* Allocated previously by isc_dsql_allocate_statement()

or isc_dsql_alloc_statement2() call. */

1,

isqlda);

if (status_vector[0] == 1 && status_vector[1])

{

/* Process error. */

isc_print_status(status_vector);

return(1);

}

if (isqlda->sqld > isqlda->sqln) /* Need more XSQLVARs. */

{

n = isqlda->sqld;

free(isqlda);

isqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(n);

isqlda->sqln = n;

isqlda->version = SQLDA_VERSION1;

isc_dsql_describe_bind(

status_vector,

&stmt_handle,

1,

isqlda);

if (status_vector[0] == 1 && status_vector[1])

{

 /* Process error. */

isc_print_status(status_vector);

return(1);

}

}

Return Value isc_dsql_describe_bind() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to isc_bad_stmt_handle, or
another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_dsql_describe(), isc_dsql_execute(), isc_dsql_execute2(), isc_dsql_prepare()

USING FUNCTION DEFINITIONS

API GUIDE 267

For more information about preparing a DSQL statement with input parameters, see
“DSQL programming methods” on page 94. For more information about creating and
populating the XSQLDA, see “Understanding the XSQLDA” on page 83.

isc_dsql_execute()
Executes a previously prepared DSQL statement.

Syntax ISC_STATUS isc_dsql_execute(

ISC_STATUS *status_vector,

isc_tr_handle *trans_handle,

isc_stmt_handle *stmt_handle,

unsigned short dialect,

XSQLDA *xsqlda);

Description isc_dsql_execute() executes a DSQL statement previously prepared with isc_dsql_prepare().
isc_dsql_execute() can be used to execute two types of statements:

g Statements that may return more than one row of data.

g Statements that need to be executed more than once.

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been set by
a previous isc_start_transaction() call; trans_handle returns
an error if NULL

stmt_handle isc_stmt_handle * Pointer to a statement handle previously allocated with
isc_dsql_allocate_statement() or
isc_dsql_alloc_statement2(); returns an error in
status_vector if NULL

dialect unsigned short Indicates the version of the extended SQL descriptor area
(XSQLDA) passed to the function; set this value to 1

xsqlda XSQLDA * Pointer to a previously allocated XSQLDA used for input

CHAPTER 12 API FUNCTION REFERENCE

268 INTERBASE 5

If a statement to execute has input parameters, then isc_dsql_execute() requires an input
XSQLDA to describe those parameters. It does not provide for an output XSQLDA. A call to
isc_dsql_execute() that executes a SELECT statement results in the creation of a list
containing all the rows of data that are the result of execution of the statement. To access
these rows, call isc_dsql_fetch() in a loop. Each call to isc_dsql_fetch() fetches the next row
from the select-list.

If the statement to be executed requires input parameter values (that is, if it contains
parameter markers), these values must be supplied in the input XSQLDA xsqlda before
calling isc_dsql_execute().

Note To execute a statement repeatedly when it both has input parameters and return
values, such as EXECUTE PROCEDURE, use isc_dsql_execute2() which requires both an input
and an output XSQLDA.

If you only need to execute a statement once, and it does not return any data, call
isc_dsql_execute_immediate() instead of isc_dsql_prepare() and isc_dsql_execute(). To execute a
statement with both input and output parameters a single time, use isc_dsql_exec_immed2().

Note CREATE DATABASE and SET TRANSACTION cannot be executed with isc_dsql_execute() or
isc_dsql_execute2(). To execute these statements, use isc_dsql_execute_immediate().

Example The following program fragment illustrates calls to isc_dsql_execute() and isc_dsql_fetch(). It
allocates input and output XSQLDAs, prepares a SELECT statement, executes it, and
fetches and processes each row one-by-one.

#include <ibase.h>

ISC_STATUS status_vector[20], fetch_stat;

XSQLDA *isqlda, *osqlda;

XSQLVAR *ivar, *ovar;

char *str = "SELECT CITY, POPULATION FROM CITIES WHERE STATE = ?";

char *state = "CA";

/* Allocate an output XSQLDA osqlda. */

osqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(2);

osqlda->version = SQLDA_VERSION1;

osqlda->sqln = 2;

/* Prepare the statement, including filling in osqlda with information

about the select-list items to be returned by the statement. */

isc_dsql_prepare(

status_vector,

&tr_handle, /* Set in previous isc_start_transaction() call. */

&stmt_handle,

/* Allocated previously by isc_dsql_allocate_statement()

or isc_dsql_alloc_statement2() call. */

USING FUNCTION DEFINITIONS

API GUIDE 269

0,

str,

1,

osqlda);

if (status_vector[0] == 1 && status_vector[1])

{

/* Process error. */

isc_print_status(status_vector);

return(1);

}

/* Check to see whether or not the output XSQLDA had enough XSQLVARS

allocated. If not, correct it -- see isc_dsql_describe(). */

/* Allocate and fill in the input XSQLDA. This example assumes you know

how many input parameters there are (1), and all other information

necessary to supply a value. If this is not true, you will need to call

isc_dsql_describe_bind(). */

isqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(1));

isqlda->version = SQLDA_VERSION1;

isqlda->sqln = 1;

isqlda->sqld = 1;

ivar = isqlda->sqlvar[0];

ivar->sqltype = SQL_TEXT;

ivar->sqllen = sizeof(state);

ivar->sqldata = state;

/* Execute the statement. */

isc_dsql_execute(

status_vector,

&tr_handle, /* Set in previous isc_start_transaction() call. */

&stmt_handle,

/* Allocated previously by isc_dsql_allocate_statement()

or isc_dsql_alloc_statement2() call. */

1,

isqlda);

if (status_vector[0] == 1 && status_vector[1])

{

/* Process error. */

isc_print_status(status_vector);

return(1);

}

CHAPTER 12 API FUNCTION REFERENCE

270 INTERBASE 5

/* Set up an output XSQLVAR structure to allocate space for each item

to be returned. */

for (i=0, ovar = osqlda->sqlvar; i < osqlda->sqld; i++, ovar++)

{

dtype = (ovar->sqltype & ~1) /* Drop NULL bit for now. */

switch(dtype)

{

case SQL_TEXT:

ovar->sqldata = (char *)malloc(sizeof(char) * ovar->sqllen);

break;

case SQL_LONG:

ovar->sqldata = (char *)malloc(sizeof(long));

/* Process remaining types. */

. . .

}

if (ovar->sqltype & 1)

{

/* Assign a variable to hold NULL status. */

ovar->sqlind = (short *)malloc(sizeof(short));

}

} /* end of for loop */

/* Fetch and process the rows in the select list one by one. */

while ((fetch_stat = isc_dsql_fetch(

status_vector,

&stmt_handle,

1,

osqlda)) == 0)

{

for (i=0; i < osqlda->sqld; i++)

{

/* Call a function you’ve written to process each returned

select-list item. */

process_column(osqlda->sqlvar[i]);

}

}

Return Value isc_dsql_execute() returns the second element of the status vector. Zero indicates success.
A nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to isc_bad_stmt_handle,
isc_bad_trans_handle, or another InterBase error code.

USING FUNCTION DEFINITIONS

API GUIDE 271

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_dsql_describe_bind(), isc_dsql_exec_immed2(), isc_dsql_execute_immediate(),
isc_dsql_execute2(), isc_dsql_fetch(), isc_dsql_prepare()

For more information about creating and populating the XSQLDA, see “Understanding
the XSQLDA” on page 83.

isc_dsql_execute2()
Executes a previously prepared DSQL statement.

Syntax ISC_STATUS isc_dsql_execute2(

ISC_STATUS *status_vector,

isc_tr_handle *trans_handle,

isc_stmt_handle *stmt_handle,

unsigned short dialect,

XSQLDA *in_xsqlda,

XSQLDA *out_xsqlda);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been set
by a previous isc_start_transaction() call; trans_handle
returns an error if NULL

stmt_handle isc_stmt_handle * Pointer to a statement handle previously allocated with
isc_dsql_allocate_statement() or
isc_dsql_alloc_statement2(); the handle returns an error in
status_vector if it is NULL

dialect unsigned short Indicates the version of the extended SQL descriptor area
(XSQLDA) passed to the function; set this value to 1

CHAPTER 12 API FUNCTION REFERENCE

272 INTERBASE 5

Description isc_dsql_execute2() executes a previously prepared DSQL statement that has input
parameters and returns results, such as EXECUTE PROCEDURE and SELECT.

If the statement to execute requires input parameter values (that is, if it contains
parameter markers), these values must be supplied in the input XSQLDA, in_xsqlda before
calling isc_dsql_execute2().

If the statement to execute returns values, they are placed in the specified output XSQLDA,
out_xsqlda. If a NULL value is supplied for the output XSQLDA and the statement returns
values, they are stored in an result set. To access the returned data, use isc_dsql_fetch() in
a loop.

TIP If you just want to execute once a statement returning just one group of data, call
isc_dsql_exec_immed2() instead of isc_dsql_prepare() and isc_dsql_execute2().

To execute a statement that does not return any data a single time, call
isc_dsql_execute_immediate() instead of isc_dsql_prepare() and isc_dsql_execute2().

Note CREATE DATABASE and SET TRANSACTION cannot be executed with isc_dsql_execute() or
isc_dsql_execute2(). To execute these statements, use isc_dsql_execute_immediate().

Example The following program fragment illustrates a sequence of calls that allocates an input
XSQLDA and loads values into it, allocates an output XSQLDA, prepares an EXECUTE
PROCEDURE statement, allocates space in the output XSQLDA for each column returned
for each row retrieved by the call, and executes the prepared statement, placing return
values in the output XSQLDA.

#include <ibase.h>

ISC_STATUS status_vector[20];

XSQLDA *isqlda, *osqlda;

XSQLVAR *ivar, *ovar;

short null_flag;

char *str = "EXECUTE PROCEDURE P1";

char *state = "CA";

/* Allocate an output XSQLDA osqlda. This example assumes you know that

P1 will return one value. */

in_xsqlda XSQLDA * Pointer to an optional, previously allocated XSQLDA used
for input; if input parameters are not supplied, set this
value to NULL

out_xsqlda XSQLDA * Pointer to an optional, previously allocated XSQLDA used
for results of statement execution; if not required, set this
value to NULL

Parameter Type Description

USING FUNCTION DEFINITIONS

API GUIDE 273

osqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(1);

osqlda->version = SQLDA_VERSION1;

osqlda->sqln = 1;

/* Prepare the statement, including filling in osqlda with information

about the item to be returned by the statement (procedure). */

isc_dsql_prepare(

status_vector,

&tr_handle, /* Set in previous isc_start_transaction() call. */

&stmt_handle,

/* Allocated previously by isc_dsql_allocate_statement()

or isc_dsql_alloc_statement2() call. */

0,

str,

1,

osqlda);

if (status_vector[0] == 1 && status_vector[1])

{

/* Process error. */

isc_print_status(status_vector);

return(1);

}

/* Set up the output XSQLVAR structure to allocate space for the return

value. Again, this example assumes you know that P1 returns just one

value. For an example of what to do if you’re not sure, see

isc_dsql_describe(). For an example of setting up an output XSQLVAR

structure to allocate space for multiple return items, see the

isc_dsql_execute() example program. */

ovar = osqlda->sqlvar[0];

dtype = (ovar->sqltype & ~1); /* Drop NULL bit for now. */

switch(dtype)

{

case SQL_TEXT:

ovar->sqldata = (char *)malloc(sizeof(char) * ovar->sqllen);

break;

case SQL_LONG:

ovar->sqldata = (char *)malloc(sizeof(long));

/* Process remaining types. */

. . .

}

if (ovar->sqltype & 1)

{

CHAPTER 12 API FUNCTION REFERENCE

274 INTERBASE 5

/* Assign a variable to hold NULL status. */

ovar->sqlind = &null_flag;

}

/* Allocate and fill in the input XSQLDA. This example assumes you know

how many input parameters there are (1), and all other information

necessary to supply a value. If this is not true, you will need to call

isc_dsql_describe_bind(). */

isqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(1);

isqlda->version = SQLDA_VERSION1;

isqlda->sqln = 1;

isqlda->sqld = 1;

ivar = isqlda->sqlvar[0];

ivar->sqltype = SQL_TEXT;

ivar->sqllen = sizeof(state);

ivar->sqldata = state;

/* Execute the statement. */

isc_dsql_execute2(

status_vector,

&tr_handle, /* Set in previous isc_start_transaction() call. */

&stmt_handle,

/* Allocated previously by isc_dsql_allocate_statement()

or isc_dsql_alloc_statement2() call. */

1,

isqlda,

osqlda);

if (status_vector[0] == 1 && status_vector[1])

{

/* Process error. */

isc_print_status(status_vector);

return(1);

}

/* Now process the value returned in osqlda->sqlvar[0]. */

. . .

Return Value isc_dsql_execute2() returns the second element of the status vector. Zero indicates success.
A nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to isc_bad_stmt_handle,
isc_bad_trans_handle, or another InterBase error code.

USING FUNCTION DEFINITIONS

API GUIDE 275

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_dsql_exec_immed2(), isc_dsql_execute_immediate(), isc_dsql_execute(),
isc_dsql_fetch(), isc_dsql_prepare()

For more information about creating and populating the XSQLDA, see “Understanding
the XSQLDA” on page 83.

isc_dsql_execute_immediate()
Prepares and executes just once a DSQL statement that does not return data.

Syntax ISC_STATUS isc_dsql_execute_immediate(

ISC_STATUS *status_vector,

isc_db_handle *db_handle,

isc_tr_handle *trans_handle,

unsigned short length,

char *statement,

unsigned short dialect,

XSQLDA *xsqlda);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

db_handle isc_db_handle * Pointer to a database handle set by a previous call to
isc_attach_database()

db_handle returns an error in status_vector if it is NULL

trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been set by
a previous isc_start_transaction() call; trans_handle returns
an error if NULL

length unsigned short Length of the DSQL statement in bytes; set to 0 in C
programs to indicate a null-terminated string

CHAPTER 12 API FUNCTION REFERENCE

276 INTERBASE 5

Description isc_dsql_execute_immediate() prepares the DSQL statement specified in statement, executes
it once, and discards it. The statement must not be one that returns data (that is, it must
not be a SELECT or EXECUTE PROCEDURE statement).

If statement requires input parameter values (that is, if it contains parameter markers),
these values must be supplied in the input XSQLDA, xsqlda.

TIP If statement returns data, or if it needs to be executed more than once, use
isc_dsql_prepare() and isc_dsql_execute() (or isc_dsql_execute2()) instead of
isc_dsql_execute_immediate().

Note You must call isc_dsql_execute_immediate() for CREATE DATABASE and SET
TRANSACTION; you cannot prepare and execute such statements by calling isc_dsql_prepare()
and isc_dsql_execute().

Example The following program fragment calls isc_dsql_execute_immediate():

#include <ibase.h>

ISC_STATUS status_vector[20];

char *insert_stmt =

"INSERT INTO CUSTOMER(CUSTNAME, BAL, CUSTNO)

VALUES("John Smith", 299.0, 5050)";

isc_dsql_execute_immediate(

status_vector,

&database_handle, /* Set in previous isc_attach_database() call. */

&tr_handle, /* Set in previous isc_start_transaction() call. */

0,

insert_stmt,

1,

NULL);

if (status_vector[0] == 1 && status_vector[1])

{

statement char * DSQL string to be executed

dialect unsigned short Indicates the version of the extended SQL descriptor area
(XSQLDA) passed to the function; set this
value to 1

xsqlda XSQLDA * Pointer to an optional, previously allocated XSQLDA used
for input; if input parameters are not supplied, set this value
to NULL

Parameter Type Description

USING FUNCTION DEFINITIONS

API GUIDE 277

/* Process error. */

isc_print_status(status_vector);

return(1);

}

Return Value isc_dsql_execute_immediate() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to isc_bad_db_handle,
isc_bad_trans_handle, or another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_dsql_exec_immed2(), isc_dsql_execute(), isc_dsql_prepare()

For more information about creating and populating the XSQLDA, see “Understanding
the XSQLDA” on page 83.

isc_dsql_exec_immed2()
Prepares and executes just once, a DSQL statement that returns no more than one row of
data.

CHAPTER 12 API FUNCTION REFERENCE

278 INTERBASE 5

Syntax ISC_STATUS isc_dsql_exec_immed2(

ISC_STATUS *status_vector,

isc_db_handle *db_handle,

isc_tr_handle *trans_handle,

unsigned short length,

char *statement,

unsigned short dialect,

XSQLDA *in_xsqlda,

XSQLDA *out_xsqlda);

Description isc_dsql_exec_immed2() prepares the DSQL statement specified in statement, executes it
once, and discards it. statement can return a single set of values (i.e, it can be an
EXECUTE PROCEDURE or singleton SELECT) in the output XSQLDA.

If statement requires input parameter values (that is, if it contains parameter markers),
these values must be supplied in the input XSQLDA, in_xsqlda.

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

db_handle isc_db_handle * Pointer to a database handle set by a previous call to
isc_attach_database()

db_handle returns an error in status_vector if it is NULL

trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been set by
a previous isc_start_transaction() call; trans_handle returns
an error if NULL

length unsigned short Length of the DSQL statement, in bytes; set to 0 in C
programs to indicate a null-terminated string

statement char * DSQL string to be executed

dialect unsigned short Indicates the version of the extended SQL descriptor area
(XSQLDA) passed to the function; set this value to 1

in_xsqlda XSQLDA * Pointer to an optional, previously allocated XSQLDA used
for input; if input parameters are not supplied, set this value
to NULL

out_xsqlda XSQLDA * Pointer to an optional, previously allocated XSQLDA used
for results of statement execution. If not required, set this
value to NULL.

USING FUNCTION DEFINITIONS

API GUIDE 279

For statements that return multiple rows of data, use isc_dsql_prepare(), isc_dsql_execute2(),
and isc_dsql_fetch().

Example The following program fragment calls isc_dsql_exec_immed2():

ISC_STATUS status_vector[20];

XSQLDA *in_xsqlda, *out_xsqlda;

char *execute_p1 = "EXECUTE PROCEDURE P1 ?";

/* Set up input and output XSQLDA structures here. */

. . .

isc_dsql_exec_immed2(

status_vector,

&database_handle, /* Set in previous isc_attach_database() call. */

&tr_handle, /* Set in previous isc_start_transaction() call. */

0,

execute_p1,

1,

in_xsqlda,

out_xsqlda);

if (status_vector[0] == 1 && status_vector[1])

{

/* Process error. */

isc_print_status(status_vector);

return(1);

}

Return Value isc_dsql_exec_immed2() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to isc_bad_db_handle,
isc_bad_trans_handle, or another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_dsql_execute2(), isc_dsql_prepare()

For more information about creating and populating the XSQLDA, see “Understanding
the XSQLDA” on page 83.

CHAPTER 12 API FUNCTION REFERENCE

280 INTERBASE 5

isc_dsql_fetch()
Retrieves data returned by a previously prepared and executed DSQL statement.

Syntax ISC_STATUS isc_dsql_fetch(

ISC_STATUS *status_vector,

isc_stmt_handle *stmt_handle,

unsigned short dialect,

XSQLDA *xsqlda);

Description isc_dsql_fetch() retrieves one row of data into xsqlda each time it is called. It is used in a
loop to retrieve and process each row of data for statements that return multiple rows in
a cursor.

A cursor is a one-way pointer into the ordered set of rows retrieved by a statement. A
cursor is only needed to process positioned UPDATE and DELETE statements made against
the rows retrieved by isc_dsql_fetch() for SELECT statements that specify an optional FOR
UPDATE OF clause.

It is up to the application to provide the loop construct for fetching the data.

Before calling isc_dsql_fetch(), a statement must be prepared with isc_dsql_prepare(), and
executed with isc_dsql_execute() (or isc_dsql_execute2() with a NULL output XSQLDA
argument). Statement execution produces a result set containing the data returned. Each
call to isc_dsql_fetch() retrieves the next available row of data from the result set into
xsqlda.

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

stmt_handle isc_stmt_handle * Pointer to a statement handle previously allocated with
isc_dsql_allocate_statement() or
isc_dsql_alloc_statement2(); the handle returns an error in
status_vector if it is NULL

dialect unsigned short Indicates the version of the extended SQL descriptor area
(XSQLDA) passed to the function; set this value to 1

xsqlda XSQLDA * Pointer to an optional, previously allocated XSQLDA used
for results of statement execution

USING FUNCTION DEFINITIONS

API GUIDE 281

Example The following program fragment illustrates a sequence of calls that allocates an output
XSQLDA, prepares a statement for execution, allocates an XSQLVAR structure in the
XSQLDA for each column of data to be retrieved, executes the statement, producing a
select list of returned data, then fetches and processes each row in a loop:

#include <ibase.h>

#define LASTLEN 20

#define FIRSTLEN 15

#define EXTLEN 4

typedef struct vary {

short vary_length;

char vary_string[1];

} VARY;

ISC_STATUS status_vector[20], retcode;

long SQLCODE;

XSQLDA *osqlda;

XSQLVAR *ovar;

short flag0, flag1, flag2;

char *str =

"SELECT last_name, first_name, phone_ext FROM phone_list

WHERE location = "Monterey" ORDER BY last_name, first_name";

char last_name[LASTLEN + 2];

char first_name[FIRSTLEN + 2];

char phone_ext[EXTLEN + 2];

VARY *vary;

/* Allocate an output XSQLDA osqlda. */

osqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(3);

osqlda->version = SQLDA_VERSION1;

osqlda->sqln = 3;

/* Prepare the statement. */

isc_dsql_prepare(

status_vector,

&tr_handle, /* Set in previous isc_start_transaction() call. */

&stmt_handle,

/* Allocated previously by isc_dsql_allocate_statement()

or isc_dsql_alloc_statement2() call. */

0,

str,

1,

osqlda);

if (status_vector[0] == 1 && status_vector[1])

{

CHAPTER 12 API FUNCTION REFERENCE

282 INTERBASE 5

/* Process error. */

isc_print_status(status_vector);

return(1);

}

/* Set up an output XSQLVAR structure to allocate space for each item

to be returned. */

osqlda->sqlvar[0].sqldata = last_name;

osqlda->sqlvar[0].sqltype = SQL_VARYING + 1;

osqlda->sqlvar[0].sqlind = &flag0;

osqlda->sqlvar[1].sqldata = first_name;

osqlda->sqlvar[1].sqltype = SQL_VARYING + 1;

osqlda->sqlvar[1].sqlind = &flag1;

osqlda->sqlvar[2].sqldata = phone_ext;

osqlda->sqlvar[2].sqltype = SQL_VARYING + 1;

osqlda->sqlvar[2].sqlind = &flag2;

/* Execute the statement. */

isc_dsql_execute(

status_vector,

&tr_handle, /* Set in previous isc_start_transaction() call. */

&stmt_handle,

/* Allocated previously by isc_dsql_allocate_statement()

or isc_dsql_alloc_statement2() call. */

1,

NULL);

if (status_vector[0] == 1 && status_vector[1])

{

/* Process error. */

isc_print_status(status_vector);

return(1);

}

printf("\n%-20s %-15s %-10s\n\n", "LAST NAME", "FIRST NAME",

"EXTENSION");

/* Fetch and print the records in the select list one by one. */

while ((retcode = isc_dsql_fetch(

status_vector,

&stmt_handle,

1,

osqlda)) == 0)

{

vary = (VARY *)last_name;

printf("%-20.*s ", vary->vary_length, vary->vary_string);

USING FUNCTION DEFINITIONS

API GUIDE 283

vary = (VARY *)first_name;

printf("%-15.*s ", vary->vary_length, vary->vary_string);

vary = (VARY *)phone_ext;

printf("%-4.*s ", vary->vary_length, vary->vary_string);

}

if (retcode != 100L)

{

SQLCODE = isc_sqlcode(status_vector);

isc_print_sqlerror(SQLCODE, status_vector);

return(1);

}

Return Value isc_dsql_fetch() returns the second element of the status vector. Zero indicates success.
The value 100 indicates that no more rows remain to be retrieved. Any other nonzero
value indicates an error. For InterBase errors, the first element of the status vector is set
to 1, and the second element is set to isc_bad_stmt_handle, or another InterBase error
code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_dsql_execute(), isc_dsql_execute2(), isc_dsql_prepare()

CHAPTER 12 API FUNCTION REFERENCE

284 INTERBASE 5

isc_dsql_free_statement()
Frees a statement handle and all resources allocated for it, or closes a cursor associated
with the statement referenced by a statement handle.

Syntax ISC_STATUS isc_dsql_free_statement(

ISC_STATUS *status_vector,

isc_stmt_handle *stmt_handle,

unsigned short option);

Description isc_dsql_free_statement() either frees a statement handle and all resources allocated for it
(option = DSQL_drop), or closes a cursor associated with the statement (option =
DSQL_close).

Note isc_dsql_free_statement() does nothing if it is called with an option value other than
DSQL_drop or DSQL_close.

4 DSQL_close
Call isc_dsql_free_statement() with the DSQL_close option to close a cursor after it is no
longer needed, that is, after fetching and processing all the rows resulting from the
execution of a query. A cursor need only be closed in this manner if it was previously
opened and associated with stmt_handle by isc_dsql_set_cursor_name().

DSQL_close closes a cursor, but the statement it was associated with remains available for
further execution.

If you have used a cursor to perform updates or deletes on all the rows returned from the
execution of a query, and you want to perform other update or delete operations on rows
resulting from execution of the same statement again (possibly with different input
parameters), follow these steps:

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

stmt_handle isc_stmt_handle * Pointer to a statement handle previously allocated with
isc_dsql_allocate_statement() or
isc_dsql_alloc_statement2(); the handle returns an error in
status_vector if it is NULL

option unsigned short Either DSQL_close or DSQL_drop

USING FUNCTION DEFINITIONS

API GUIDE 285

1. Close the cursor with isc_dsql_free_statement().

2. Re-open it with isc_dsql_set_cursor_name().

3. If desired, change the input parameters to be passed to the statement.

4. Re-execute the statement to retrieve a new select list.

5. Retrieve rows in a loop with isc_dsql_fetch() and process them again with
isc_dsql_execute_immediate().

4 DSQL_drop
Statement handles allocated with isc_dsql_allocate_statement() must be released when no
longer needed by calling isc_dsql_free_statement() with the DSQL_drop option. This option
frees all resources associated with the statement handle, and closes any open cursors
associated with the statement handle.

Example The following program fragment shows examples of the two types of
isc_dsql_free_statement() calls. It assumes that stmt_handle1 and stmt_handle2 are
statement handles, each of which was previously allocated with either
isc_dsql_allocate_statement() or isc_dsql_alloc_statement2(). A cursor is also assumed to have
been associated with the statement referenced by stmt_handle1.

#include <ibase.h>

ISC_STATUS status_vector[20];

. . .

/* Free the cursor associated with stmt_handle1. */

isc_dsql_free_statement(

status_vector,

&stmt_handle1,

DSQL_close);

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector);

return(1);

}

/* Free stmt_handle2. */

isc_dsql_free_statement(

status_vector,

&stmt_handle2,

DSQL_drop);

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector);

return(1);

CHAPTER 12 API FUNCTION REFERENCE

286 INTERBASE 5

}

Return Value isc_dsql_free_statement() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to isc_bad_stmt_handle, or
another InterBase error code.To check for an InterBase error, examine the first two
elements of the status vector directly. For more information about examining the status
vector, see Chapter 10, “Handling Error Conditions.”

See Also isc_dsql_allocate_statement(), isc_dsql_alloc_statement2(),
isc_dsql_set_cursor_name()

isc_dsql_prepare()
Prepares a DSQL statement for repeated execution.

Syntax ISC_STATUS isc_dsql_prepare(

ISC_STATUS *status_vector,

isc_tr_handle *trans_handle,

isc_stmt_handle *stmt_handle,

unsigned short length,

char *statement,

unsigned short dialect,

XSQLDA *xsqlda);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been set
by a previous isc_start_transaction() call; trans_handle
returns an error if NULL

stmt_handle isc_stmt_handle * Pointer to a statement handle previously allocated with
isc_dsql_allocate_statement() or
isc_dsql_alloc_statement2(); the handle returns an error in
status_vector if it is NULL

length unsigned short Length of the DSQL statement, in bytes; set to 0 in C
programs to indicate a null-terminated string

USING FUNCTION DEFINITIONS

API GUIDE 287

Description isc_dsql_prepare() readies the DSQL statement specified in statement for repeated
execution by checking it for syntax errors and parsing it into a format that can be
efficiently executed. All SELECT statements must be prepared with isc_dsql_prepare().

After a statement is prepared, it is available for execution as many times as necessary
during the current session. Preparing a statement for repeated execution is more efficient
than using isc_dsql_execute_immediate() or isc_dsql_exec_immed2() over and over again to
prepare and execute a statement.

If a statement to be prepared does not return data, set the output XSQLDA to NULL.
Otherwise, the output XSQLDA must be allocated prior to calling isc_dsql_prepare(). Allocate
the XSQLDA using the macro, XSQLDA_LENGTH, defined in ibase.h, as follows:

xsqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(n));

XSQLDA_LENGTH calculates the number of bytes required when n result columns will be
returned by the statement, and allocates the appropriate amount of storage.

After allocating the XSQLDA xsqlda, set xsqlda->version to SQLDA_VERSION1, and set
xsqlda_sqln to indicate the number of XSQLVAR structures allocated.

When isc_dsql_prepare() is called, it fills in the other fields of the XSQLDA and all the
XSQLVARs with information such as the datatype, length, and name of the corresponding
select-list items in the statement. It fills in xsqlda->sqld with the actual number of
select-list items returned. If xsqlda->sqld is greater than xsqlda->sqln, then enough room
is not allocated, and the XSQLDA must be resized by following these steps:

1. Record the current value of the xsqlda->sqld.

2. Free the storage previously allocated for xsqlda.

3. Reallocate storage for xsqlda, this time specifying the correct number (from
step 1) in the argument to XSQLDA_LENGTH.

4. Reset xsqlda->sqld and xsqlda->version.

5. Execute isc_dsql_describe() to fill in the xsqlda fields.

statement char * DSQL string to be executed

dialect unsigned short Indicates the version of the extended SQL descriptor area
(XSQLDA) passed to the function; set this value to 1

xsqlda XSQLDA * Pointer to an optional, previously allocated XSQLDA used
for results of statement execution

Parameter Type Description

CHAPTER 12 API FUNCTION REFERENCE

288 INTERBASE 5

Note If the prepared statement requires input parameter values, then an input XSQLDA
will need to be allocated and filled in with appropriate values prior to calling
isc_dsql_execute() or isc_dsql_execute2(). You can either allocate and directly fill in all the
fields of the input XSQLDA, or you can allocate it, call isc_dsql_describe_bind() to get
information regarding the number and types of parameters required, then fill in
appropriate values.

Example The following program fragment illustrates the allocation of the output XSQLDA, and a
call to isc_dsql_prepare():

#include <ibase.h>

ISC_STATUS status_vector[20];

XSQLDA *osqlda;

char *query =

"SELECT CITY, STATE, POPULATION FROM CITIES \

WHERE STATE = "NY" ORDER BY CITY DESCENDING";

osqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(3);

osqlda->version = SQLDA_VERSION1;

osqlda->sqln = 3;

isc_dsql_prepare(

status_vector,

&tr_handle, /* Set in previous isc_start_transaction() call. */

&stmt_handle,

/* Allocated previously by isc_dsql_allocate_statement()

or isc_dsql_alloc_statement2() call. */

0,

query,

1,

osqlda);

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector);

return(1);

}

More complete examples showing the subsequent execution and fetching of result data
are provided in the example programs for isc_dsql_execute(), isc_dsql_execute2(), and
isc_dsql_fetch().

USING FUNCTION DEFINITIONS

API GUIDE 289

Return Value isc_dsql_prepare() returns the second element of the status vector. Zero indicates success.
A nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to isc_bad_stmt_handle,
isc_bad_trans_handle, or another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_dsql_describe(), isc_dsql_describe_bind(), isc_dsql_execute(),
isc_dsql_execute2(), isc_dsql_fetch()

For more information about creating and populating the XSQLDA, see “Understanding
the XSQLDA” on page 83 of Chapter 6, “Working with Dynamic SQL.”

isc_dsql_set_cursor_name()
Defines a cursor name and associates it with a DSQL statement.

Syntax ISC_STATUS isc_dsql_set_cursor_name(

ISC_STATUS *status_vector,

isc_stmt_handle *stmt_handle,

char *cursor_name,

unsigned short type);

Description isc_dsql_set_cursor_name() defines a cursor name and associates it with a DSQL statement
handle for a statement that returns multiple rows of data (for example, SELECT),
effectively opening the cursor for access.

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

stmt_handle isc_stmt_handle * Pointer to a statement handle previously allocated with
isc_dsql_allocate_statement() or
isc_dsql_alloc_statement2(); the handle returns an error in
status_vector if it is NULL

cursor_name char * String name of a cursor

type unsigned short Reserved for future use; set to NULL

CHAPTER 12 API FUNCTION REFERENCE

290 INTERBASE 5

A cursor is a one-way pointer into the ordered set of rows retrieved by a statement. A
cursor is only needed to process positioned UPDATE and DELETE statements made against
the rows retrieved by isc_dsql_fetch() for SELECT statements that specify an optional FOR
UPDATE OF clause.

Note In UPDATE or DELETE statements, the cursor name cannot be supplied as a
parameter marker (?).

When a cursor is no longer needed, close it with the DSQL_close option of
isc_dsql_free_statement().

Example The following pseudo-code illustrates the calling sequence necessary to execute an
UPDATE or DELETE with the WHERE CURRENT OF clause using a cursor name established
and opened with isc_dsql_set_cursor_name():

#include <ibase.h>

ISC_STATUS status_vector[20], fetch_stat;

isc_stmt_handle st_handle = NULL;

char *cursor = "S";

/* Allocate the statement handle st_handle. */

isc_dsql_allocate_statement(

status_vector,

&db, /* Database handle set by isc_attach_database() call. /*

&st_handle);

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector);

return(1);

}

/* Set up an output XSQLDA osqlda here. */

/* Call isc_dsql_prepare() to prepare the SELECT statement. */

/* Set up an input XSQLDA, if needed, for the SELECT statement. */

/* Call isc_dsql_execute() to execute the SELECT statement. */

/* Set up an input XSQLDA (if needed) for the UPDATE or DELETE

statement. */

/* Declare the cursor name, and associate it with st_handle. */

isc_dsql_set_cursor_name(

status_vector,

&st_handle,

cursor, 0);

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector);

USING FUNCTION DEFINITIONS

API GUIDE 291

return(1);

}

/* Fetch rows one by one, with the cursor pointing to each row as it

is fetched, and execute an UPDATE or DELETE statement to update or

delete the row pointed to by the cursor. */

while ((fetch_stat = isc_dsql_fetch(

status_vector, &st_handle, 1, osqlda)) == 0)

{

. . .

/* Update or delete the current row by executing an "UPDATE ...

WHERE CURRENT OF S" or "DELETE ... WHERE CURRENT OF S"

statement, where "S" is the name of the cursor declared in

isc_dsql_set_cursor_name(). */

}

Return Value isc_dsql_set_cursor_name() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to isc_bad_stmt_handle, or
another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_dsql_fetch(), isc_dsql_free_statement()

CHAPTER 12 API FUNCTION REFERENCE

292 INTERBASE 5

isc_dsql_sql_info()
Returns requested information about a prepared DSQL statement.

Syntax ISC_STATUS isc_dsql_sql_info(

ISC_STATUS *status_vector,

isc_stmt_handle *stmt_handle,

unsigned short item_length,

char *items,

unsigned short buffer_length,

char *buffer);

Description isc_dsql_sql_info() returns requested information about a statement prepared with a call to
isc_dsql_prepare(). The main application need for this function is to determine the
statement type of an unknown prepared statement, for example, a statement entered by
the user at run time.

Requested information can include the:

g Statement type.

g Number of input parameters required by the statement.

g Number of output values returned by the statement.

g Detailed information regarding each input parameter or output value, including its
datatype, scale, and length.

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

stmt_handle isc_stmt_handle * Pointer to a statement handle previously allocated with
isc_dsql_allocate_statement() or
isc_dsql_alloc_statement2(); the handle returns an error in
status_vector if it is NULL

item_length unsigned short Number of bytes in the string of information items in items

items char * String of requested information items

buffer_length unsigned short Number of bytes in the result buffer, buffer

buffer char * User-provided buffer for holding returned data; must be
large enough to hold the information requested

USING FUNCTION DEFINITIONS

API GUIDE 293

Example The following illustrates a call to isc_dsql_sql_info() to determine the statement type of the
statement whose handle is referenced by stmt:

int statement_type;

int length;

char type_item[] = {isc_info_sql_stmt_type};

char res_buffer[8];

isc_dsql_sql_info(

status_vector,

&stmt,

/* Allocated previously by isc_dsql_allocate_statement() or

isc_dsql_alloc_statement2() call. */

sizeof(type_item),

type_item,

sizeof(res_buffer),

res_buffer);

if (res_buffer[0] == isc_info_sql_stmt_type)

{

length = isc_vax_integer(buffer[1], 2);

statement_type = isc_vax_integer(buffer[3], length);

}

Return Value isc_dsql_sql_info() returns the second element of the status vector. Zero indicates success.
A nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_dsql_describe_bind(), isc_dsql_describe(), isc_vax_integer()

For more information about determining unknown statement types at run time, see
“Determining an unknown statement type at runtime” on page 111 of Chapter 6,
“Working with Dynamic SQL.”

isc_encode_date()
Translates a date from the C tm format to InterBase ISC_QUAD format prior to inserting or
updating a DATE value in a table.

CHAPTER 12 API FUNCTION REFERENCE

294 INTERBASE 5

Syntax void isc_encode_date(

void *tm_date,

ISC_QUAD *ib_date);

Description isc_encode_date() translates a date in a C time structure into an ISC_QUAD format internal
to InterBase. This call is used prior to writing DATE data to a table to guarantee that the
date is in a format recognized by InterBase.

Use the isc_dsql family of API calls to insert or update DATE data from the ISC_QUAD
structure in a table.

Example The following code fragment illustrates declaring time structures and calling
isc_encode_date() to translate a C time format into an InterBase date format prior to
inserting or updating a table:

#include <time.h>

#include <ibase.h>

. . .

struct tm hire_time;

ISC_QUAD hire_date;

. . .

/* Store date info into the tm struct here. */

. . .

isc_encode_date(&hire_time, &hire_date);

/* Now use a DSQL INSERT or UPDATE statement to move the date into a

DATE column. */

Return Value None.

See Also isc_decode_date()

Parameter Type Description

tm_date void * Pointer to a C tm structure

ib_date ISC_QUAD * Pointer to an eight-byte ISC_QUAD structure containing a date
in InterBase format

USING FUNCTION DEFINITIONS

API GUIDE 295

isc_event_block()
Allocates two event parameter buffers (EPBs) for subsequent use with other API event
calls.

Syntax long isc_event_block(

char **event_buffer,

char **result_buffer,

unsigned short id_count,

. . .);

Description isc_event_block() must be called before any other event functions. It:

g Allocates two event parameter buffers of the same size, and stores their addresses into the
character pointers addressed by event_buffer and result_buffer.

g Stores into the buffer referenced by event_buffer the names and event counts for each of
the specified events. The names are the ones that appear as the final arguments to
isc_event_block(). The event counts are initialized to zero and are used to specify how many
times each event has been posted prior to each wait for events to occur.

g Returns the length, in bytes, of the buffers.

The buffers, and their lengths, are used in subsequent calls to the functions
isc_wait_for_event(), isc_que_events(), and isc_event_counts(). event_buffer is used to indicate
the events of interest, and to hold the counts in effect before a wait for one of the events.
After an event is posted, result_buffer is filled in exactly as event_buffer, except that the
event counts are updated. isc_event_counts() is then called to determine which events were
posted between the time the counts were set in event_buffer, and the time the counts are
set in result_buffer.

Parameter Type Description

event_buffer char ** Address of a character pointer; this function allocates and
initializes an event parameter buffer and stores its address
into the character pointer

result_buffer char ** Address of a character pointer; this function allocates an
event parameter buffer, and stores its address into the
character pointer

id_count unsigned short Number of event identifier strings that follow

… char * Up to 15 null-terminated and comma-separated strings
that each name an event

CHAPTER 12 API FUNCTION REFERENCE

296 INTERBASE 5

Example The following program fragment illustrates a call to isc_event_block():

#define number_of_stocks 3;

char *event_buffer, *result_buffer;

long length;

length = isc_event_block(

&event_buffer,

&result_buffer,

number_of_stocks,

"DEC", "HP", "SUN");

Return Value isc_event_block() returns a number that is the size, in bytes, of each event parameter
buffer it allocates.

See Also isc_event_counts(), isc_que_events(), isc_wait_for_event()

isc_event_counts()
Compares event parameter buffers (EPBs) to determine which events have been posted,
and prepares the event parameter buffers for the next call to isc_que_events() or
isc_wait_for_event().

Syntax void isc_event_counts(

ISC_STATUS *status_vector,

short buffer_length,

char *event_buffer,

char *result_buffer);

Parameter Type Description

status_vector long * Pointer to the status vector, which is used to store the
differences in event counts for each corresponding event in
event_buffer and result_buffer

USING FUNCTION DEFINITIONS

API GUIDE 297

Description isc_event_counts() compares the event counts in the event parameter buffers, event_buffer
and result_buffer, and sets up to the first 15 elements of status_array to contain the
differences. It then modifies event_buffer to contain the same event counts as
result_buffer in preparation for the next call to either isc_wait_for_event() or
isc_que_events().

The counts in event_buffer specify how many times each event had been posted since
the previous call to isc_event_wait() or isc_que_events(). The counts in result_buffer equal the
values in event_buffer plus the number of additional times an event is posted after the
current call to isc_event_wait() or isc_que_events(). If an event is posted after a call to either
of these functions, its count is greater in result_buffer than in event_buffer. Other event
counts may also be greater because an event may have been posted between calls to
either of these functions. The values in status_array are the differences in values between
event_buffer and result_buffer. This mechanism of comparing all the counts ensures that
no event postings are missed.

Example The following program fragment illustrates the set-up and waiting on any of the events
named “DEC”, “HP”, or “SUN”, then calling isc_event_counts() to determine which events
have been posted:

#include <ibase.h>

#define number_of_stocks 3;

char *event_buffer, *result_buffer;

ISC_STATUS status_vector[20];

char *event_names[] = {"DEC", "HP", "SUN"};

long length;

int i;

length = isc_event_block(

&event_buffer,

&result_buffer,

buffer_length short Length of the event parameter buffers, returned by the
isc_event_block() call that allocated them

event_buffer char * Pointer to the event parameter buffer that specifies the event
counts prior to the previous call to isc_wait_for_event() or
isc_que_events()

result_buffer char * Pointer to the event parameter buffer filled in as a result of
posting an event

Parameter Type Description

CHAPTER 12 API FUNCTION REFERENCE

298 INTERBASE 5

number_of_stocks,

"DEC", "HP", "SUN");

isc_wait_for_event(

status_vector,

&database_handle, /* Set by previous isc_attach_database(). */

length, /* Returned from isc_event_block(). */

event_buffer,

result_buffer);

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector); /* Display error message. */

return(1);

}

isc_event_counts(

status_vector,

(short) length,

event_buffer,

result_buffer);

for (i=0; i<number_of_stocks; i++)

if (status_vector[i])

{

/* The event has been posted. Do whatever is appropriate, for

example,

 initiating a buy or sell order. */

;

}

Return Value None.

See Also isc_que_events(), isc_wait_for_event()

USING FUNCTION DEFINITIONS

API GUIDE 299

isc_expand_dpb()
Dynamically builds or expands a database parameter buffer (DPB) to include database
parameters.

Syntax void isc_expand_dpb(

char **dpb,

unsigned short *dpb_size,

. . .);

Description isc_expand_dpb() builds or expands a DPB dynamically. Its main use is to simplify the
building of the DPB prior to a call to isc_attach_database(), or to allow an end user to
supply a user name and password combination at run time. In many cases, the DPB
must be constructed programmatically, but isc_expand_dpb() enables an application to
pass user names, password, message file, and character set parameters to the function,
which then adds them to an existing DPB.

A pointer to a previously allocated and initialized DPB must be passed to isc_expand_dpb()
along with a pointer to a variable containing the current size of the DPB when this
function is called. If the space allocated for the DPB is not large enough for the
parameters passed to isc_expand_dpb(), then the function reallocates a larger DPB,
preserving its current contents, and adds the new parameters.

To ensure proper memory management, applications that call isc_expand_dpb() should
always allocate DPBs large enough to hold all anticipated parameters.

Example The following code calls isc_expand_dpb() to create a DPB, then attaches to a database
using the newly created DPB. user_name and user_password are assumed to be
variables whose values have been filled in, for example, after asking the user to specify
the name and password to be used.

#include <ibase.h>

char *dpb;

ISC_STATUS status_vector[20];

isc_db_handle handle = NULL;

short dpb_length;

Parameter Type Description

dpb char ** Pointer to an existing DPB

dpb_size unsigned short * Pointer to the current size, in bytes, of the DPB

… char * Pointers to items to insert into the expanded DPB

CHAPTER 12 API FUNCTION REFERENCE

300 INTERBASE 5

/* Build the database parameter buffer. */

dpb = (char *) malloc(50);

dpb_length = 0;

isc_expand_dpb(&dpb, &dpb_length, isc_dpb_user_name, user_name,

isc_dpb_password, user_password, NULL);

isc_attach_database(

status_vector,

0,

"employee.db",

&handle,

dpb_length,

dpb_buffer);

if (status_vector[0] == 1 && status_vector[1])

{

/* An error occurred. */

isc_print_status(status_vector);

return(1);

}

Return Value None.

See Also isc_attach_database()

USING FUNCTION DEFINITIONS

API GUIDE 301

isc_get_segment()
Reads a segment from an open Blob.

Syntax ISC_STATUS isc_get_segment(

ISC_STATUS *status_vector,

isc_blob_handle *blob_handle,

unsigned short *actual_seg_length,

unsigned short seg_buffer_length,

char *seg_buffer);

Description isc_get_segment() reads a Blob segment from a previously opened Blob. You can set the
seg_buffer_length parameter to a size that is efficient for a particular type of Blob data.
For example, if you are reading Blob data from a text file, you might set the segment
buffer length to 80, to take advantage of the 72 to 80 character line lengths that are
common in text files. By periodically checking the value of the actual segment length in
your loop, you can determine an end-of-line or end-of-file condition.

Before reading any part of a Blob, you must open the Blob with a call to isc_open_blob2().
isc_get_segment() behaves differently depending on which call precedes it. If the most
recent call is to isc_open_blob2(), then a call to isc_get_segment() reads the first segment in
the Blob. If the most recent call is to isc_get_segment(), then it reads the next segment.

If Blob filters are specified when a Blob is opened, then each segment retrieved by
isc_get_segment() is filtered on read.

Note Blob filters are not supported on NetWare.

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

blob_handle isc_blob_handle * Pointer to the handle of the Blob you want to read.

actual_seg_length unsigned short * Pointer to the actual segment length that InterBase
reads into the buffer; useful if the segment length is
shorter than the buffer length

seg_buffer_length unsigned short Length of the segment buffer

seg_buffer char * Pointer to the segment buffer

CHAPTER 12 API FUNCTION REFERENCE

302 INTERBASE 5

You can read bitmaps and other binary files directly, without filtering, if you don’t need
to change from one format to another, say from .TIF to .JPEG. You can also store
compressed bitmaps directly in a database in formats such as .JPG (JPEG), .BMP (Windows
native bitmaps), or .GIF (CompuServe Graphic Interchange Format). No filtering is
required.

You can store bitmaps in a database in row-major or column-major order.

If the buffer is not large enough to hold the entire current segment, the function returns
isc_segment, and the next call to isc_get_segment() gets the next chunk of the oversized
segment rather than getting the next segment.

When isc_get_segment() reads the last segment of the Blob, the function returns the code
isc_segstr_eof.

For more information about reading data from a Blob, see Chapter 7, “Working with
Blob Data.”

Example The following call gets a segment from one Blob and writes it to another:

get_status = isc_get_segment(status, &from_blob, &seg_len, 80,

buffer);

if (status[0] == 1 && status[1])

{

isc_print_status(status);

return(1);

}

if (get_status != isc_segstr_eof)

write_status = isc_put_segment(status, &to_blob, seg_len, buffer);

if (status[0] == 1 && status[1])

{

isc_print_status(status);

return(1);

}

Return Value isc_get_segment() returns the second element of the status vector. Zero indicates success.
isc_segment indicates the buffer is not large enough to hold the entire current segment;
the next call to isc_get_segment() gets the next chunk of the oversized segment rather
than getting the next segment. isc_segstr_eof indicates that the last segment of the Blob
has been read. Any other nonzero value indicates an error. For InterBase errors, the first
element of the status vector is set to 1, and the second element is set to an InterBase
error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

USING FUNCTION DEFINITIONS

API GUIDE 303

See Also isc_create_blob2(), isc_open_blob2(), isc_put_segment()

isc_interprete()
Extracts the text for an InterBase error message from the error status vector to a
user-defined buffer.

Syntax ISC_STATUS isc_interprete(

char *buffer,

ISC_STATUS **status_vector);

Description Given both the location of a storage buffer allocated in a program, and the address of
the status vector, isc_interprete() builds an error message string from the information in
the status vector, puts the formatted string in the buffer where the program can
manipulate it, and advances the status vector pointer to the start of the next cluster of
error message information. For example, you might declare an error string buffer, call
isc_interprete() to retrieve the first error message and insert the message into the buffer,
write the buffer to a log file, then peek at the next cluster to see if it contains more error
information.

isc_interprete() retrieves and formats a single message each time it is called. When an error
occurs, however, the status vector usually contains more than one error message. To
retrieve all relevant error messages, you must make repeated calls to isc_interprete() until
no more messages are returned.

Note Do not pass the address of the status vector directly, because each time
isc_interprete() is called, it modifies the pointer to the status vector to point to the start of
the next available message.

To display all error messages on the screen instead of to a buffer, use isc_print_status().

Example The following code declares a message buffer, a status vector, and a pointer to the
vector, then illustrates how repeated calls are made to isc_interprete() to store all messages
in the buffer:

#include <ibase.h>

char msg[512];

Parameter Type Description

buffer char * Application buffer for storing an InterBase error message

status_vector ISC_STATUS ** Pointer to a pointer to the error status vector

CHAPTER 12 API FUNCTION REFERENCE

304 INTERBASE 5

ISC_STATUS status_vector[20];

long *pvector; /* Pointer to pointer to status vector. */

FILE *efile; /* Code fragment assumes this points to an open file. */

. . .

pvector = status_vector; /* (Re)set to start of status vector. */

isc_interprete(msg, &pvector); /* Retrieve first message. */

fprintf(efile, "%s\n", msg); /* Write buffer to log file. */

msg[0] = ’-’; /* Append leading hyphen to secondary messages. */

while(isc_interprete(msg + 1,&pvector)) /* More messages? */

{

fprintf(efile, "%s\n", msg); /* If so, write them, too. */

}

fclose(efile);

. . .

Return Value If successful, isc_interprete() returns the length of the error message string it stores in
buffer. It also advances the status vector pointer to the start of the next cluster of error
message information.

If there are no more messages in the status vector, or if isc_interprete() cannot interpret the
next message, it returns 0.

See Also isc_print_sqlerror(), isc_print_status(), isc_sqlcode(), isc_sql_interprete()

USING FUNCTION DEFINITIONS

API GUIDE 305

isc_modify_user()
Modifies a user record from the password database, isc4.gdb.

Syntax ISC_STATUS isc_modify_user(

ISC_STATUS *status

USER_SEC_DATA *user_sec_data);

Description The three security functions, isc_add_user(), isc_delete_user(), and isc_modify_user() mirror
functionality that is available in the gsec command-line utility. isc_modify_user() modifies a
record from isc4.gdb, InterBase’s password database.

At a minimum, you must provide the user name. Any additional user information that
you supply, such as first name, last name, or password, overwrites the information that
is already in isc4.gdb.

If the server is not local, you must provide both a server name and a protocol. Valid
choices for the protocol field are sec_protocol_tcpip, sec_protocol_netbeui,
sec_protocol_spx, and sec_protocol_local.

InterBase reads the settings for the ISC_USER and ISC_PASSWORD environment variables if
you do not provide a DBA user name and password.

The definition for the USER_SEC_DATA struct in ibase.h is as follows:

typedef struct {

short sec_flags; /* which fields are specified */

int uid; /* the user’s id */

int gid; /* the user’s group id */

int protocol; /* protocol to use for connection */

char *server; /* server to administer */

char *user_name; /* the user’s name */

char *password; /* the user’s password */

char *group_name; /* the group name */

char *first_name; /* the user’s first name */

char *middle_name; /* the user’s middle name */

char *last_name; /* the user’s last name */

char *dba_user_name; /* the dba user name */

Parameter Type Description

status vector ISC_STATUS * Pointer to the error status vector

user_sec_data USER_SEC_DATA * Pointer to a struct that is defined in ibase.h

CHAPTER 12 API FUNCTION REFERENCE

306 INTERBASE 5

char *dba_password; /* the dba password */

} USER_SEC_DATA;

When you pass this struct to one of the three security functions, you can tell it which
fields you have specified by doing a bitwise OR of the following values, which are defined
in ibase.h:

sec_uid_spec 0x01

sec_gid_spec 0x02

sec_server_spec 0x04

sec_password_spec 0x08

sec_group_name_spec 0x10

sec_first_name_spec 0x20

sec_middle_name_spec 0x40

sec_last_name_spec 0x80

sec_dba_user_name_spec 0x100

sec_dba_password_spec 0x200

No bit values are available for user name and password, since they are required.

The following error messages exist for this function:

Code Value Description

isc_usrname_too_long 335544747 The user name passed in is greater than 31 bytes

isc_password_too_long 335544748 The password passed in is longer than 8 bytes

isc_usrname_required 335544749 The operation requires a user name

isc_password_required 335544750 The operation requires a password

isc_bad_protocol 335544751 The protocol specified is invalid

isc_dup_usrname_found 335544752 The user name being added already exists in the
security database.

TABLE 12.19 Error messages for user security functions

USING FUNCTION DEFINITIONS

API GUIDE 307

Example The following example modifies isc4.gdb to change the password for the user Socks,
using the bitwise OR technique for passing values from the USER_SEC_DATA struct.

{

ISC_STATUS status[20];

USER_SEC_DATA sec;

sec.server = "kennel";

sec.dba_user_name= "sysdba";

sec.dba_password = "masterkey";

sec.protocol = sec_protocol_tcpip;

sec.user_name = "socks";

sec.password = "feed_me!"; /* Note: do not hardcode passwords

*/

sec.sec_flags = sec_server_spec

| sec_password_spec

| sec_dba_user_name_spec

| sec_dba_password_spec;

isc_add_user(status, &sec);

/* check status for errors */

if (status[0] == 1 && status[1])

{

switch (status[1]) {

case isc_usrname_too_long:

printf("Security database cannot accept long user names\n");

break;

...

isc_usrname_not_found 335544753 The user name was not found in the security database

isc_error_adding_sec_record 335544754 An unknown error occurred while adding a user

isc_error_deleting_sec_record 335544755 An unknown error occurred while deleting a user

isc_error_modifying_sec_record 335544756 An unknown error occurred while modifying a user

isc_error_updating_sec_db 335544757 An unknown error occurred while updating the security
database

Code Value Description

TABLE 12.19 Error messages for user security functions

CHAPTER 12 API FUNCTION REFERENCE

308 INTERBASE 5

}

}

}

Return Value isc_modify_user() returns the second element of the status vector. Zero indicates success. A
nonzero value indicates an error. See the “Description” section for this function for a list
of error codes. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_add_user(), isc_delete_user()

isc_open_blob2()
Opens an existing Blob for retrieval and optional filtering.

Syntax ISC_STATUS isc_open_blob2(

ISC_STATUS *status_vector,

isc_db_handle *db_handle,

isc_tr_handle *trans_handle,

isc_blob_handle *blob_handle,

ISC_QUAD *blob_id,

short bpb_length,

char *bpb_address);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

db_handle isc_db_handle * Pointer to a database handle set by a previous call to
isc_attach_database()

db_handle returns an error in status_vector if it is NULL

trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been set
by a previous isc_start_transaction() call; trans_handle
returns an error if NULL

blob_handle isc_blob_handle * Pointer to the Blob handle, which must be NULL when you
make this call

USING FUNCTION DEFINITIONS

API GUIDE 309

Description isc_open_blob2() opens an existing Blob for retrieval and optional filtering from one Blob
subtype to another.

Note Using Blob filters is not supported on NetWare.

Input and output Blob filter types are passed to isc_open_blob2() as subtype information in
a previously populated BPB, pointed to by bpb_address. If Blob filters are not needed or
cannot be used, a BPB is not needed; pass 0 for bpb_length and NULL for bpb_address.

The blob_id identifies which particular Blob is to be opened. This blob_id is set by a
sequence of DSQL function calls.

On success, isc_open_blob2() assigns a unique ID to blob_handle. Subsequent API calls use
this handle to identify the Blob against which they operate.

After a blob is opened, its data can be read by a sequence of calls to isc_get_segment().

When finished accessing the Blob, close it with isc_close_blob().

For more information about opening a Blob for retrieval and optional filtering, see
Chapter 7, “Working with Blob Data.”

Example The following fragment is excerpted from the example file, api9.c. The example
program displays job descriptions that are passed through a filter.

while ((fetch_stat = isc_dsql_fetch(status, &stmt, 1, sqlda)) == 0)

{

printf("\nJOB CODE: %5s GRADE: %d", job_code, job_grade);

printf(" COUNTRY: %-20s\n\n", job_country);

/* Open the blob with the fetched blob_id. */

isc_open_blob2(status, &DB, &trans, &blob_handle, &blob_id, 9,

bpb);

if (status[0] == 1 && status[1])

{

isc_print_status(status);

return(1);

blob_id ISC_QUAD * Pointer to the 64-bit system-defined Blob ID, which is
stored in a field in the table and points to the first segment
of the Blob or to a page of pointers to Blob fragments

bpb_length short Length of the Blob parameter buffer (BPB)

bpb_address char * Pointer to the BPB

Parameter Type Description

CHAPTER 12 API FUNCTION REFERENCE

310 INTERBASE 5

}

}

Return Value isc_open_blob2() returns the second element of the status vector. Zero indicates success. A
nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_close_blob()

isc_prepare_transaction()
Executes the first phase of a two-phase commit against multiple databases.

Syntax ISC_STATUS isc_prepare_transaction(

ISC_STATUS *status_vector,

isc_tr_handle *trans_handle);

Description isc_prepare_transaction() initiates the first phase of a two-phase commit under program
direction. It alerts InterBase, which polls all database participants and waits for replies.
The isc_prepare_transaction() function puts the transaction in limbo.

Because a call to this function indicates that you intend to control all phases of the
commit, you must complete the second phase of the commit by explicitly calling the
isc_commit_transaction() function.

If a call to isc_prepare_transaction() fails, the application should roll back the transaction
with a call to the isc_rollback_transaction() function.

Note If you want InterBase to automatically perform the two-phase commit, call
isc_commit_transaction() without calling isc_prepare_transaction().

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been set by a
previous isc_start_transaction() call; trans_handle returns an
error if NULL

USING FUNCTION DEFINITIONS

API GUIDE 311

Example The following example executes the first phase of a two-phase commit and includes a
rollback in case of failure:

isc_prepare_transaction(status_vector, &trans);

if (status_vector[0] == 1 && status_vector[1])

rb_status = isc_rollback_transaction(status_vector, &trans)

else

{

isc_commit_transaction(status_vector, &trans);

if (!(status_vector[0] == 1 && status_vector[1]))

fprintf("Commit successful.");

}

Return Value isc_prepare_transaction() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_commit_transaction(), isc_prepare_transaction2(), isc_rollback_transaction()

CHAPTER 12 API FUNCTION REFERENCE

312 INTERBASE 5

isc_prepare_transaction2()
Performs the first phase of a two-phase commit for multi-database transactions.

Syntax ISC_STATUS isc_prepare_transaction2(

ISC_STATUS *status_vector,

isc_tr_handle *trans_handle,

unsigned short msg_length,

char *message);

Description isc_prepare_transaction2() performs the first phase of a two-phase commit, just as
isc_prepare_transaction() does, but isc_prepare_transaction2() expects you to provide two
additional arguments:

g An information message to write to the RDB$TRANSACTION_DESCRIPTION column in the
RDB$TRANSACTIONS system table that describes the transaction to commit, so that recovery
is possible in the event a system crash occurs during the completion of the commit.

g The length, in bytes, of the information message.

By electing to use isc_prepare_transaction2(), you are, in effect, disabling the automatic
recovery functions inherent in the two-phase commit. It is your responsibility to deal with
recovery issues that might occur during failure of the two-phase commit. Normally,
InterBase automatically writes to the RDB$TRANSACTION_DESCRIPTION column in the
RDB$TRANSACTIONS system table information that makes it possible to reconnect
following a system crash during the commit. You can manually write a message string
into RDB$TRANSACTIONS, by using the message parameter in this function.

At the risk of preventing recovery in the event of a system crash, you might choose to
avoid writing a message to RDB$TRANSACTION altogether if you determine that there is too
much overhead associated with this extra action every time your application commits.

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been set
by a previous isc_start_transaction() call; trans_handle
returns an error if NULL

msg_length unsigned short Length of message in bytes

message char * Transaction description buffer

USING FUNCTION DEFINITIONS

API GUIDE 313

Example The following example executes the first phase of a two-phase commit and includes a
rollback in case of failure:

isc_prepare_transaction2(status_vector, &trans, msg_len, msg);

if (status_vector[0] == 1 && status_vector[1])

rb_status = isc_rollback_transaction(status_vector, &trans);

Return Value isc_prepare_transaction2() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_commit_transaction(), isc_prepare_transaction(), isc_rollback_transaction()

isc_print_sqlerror()
Displays an SQLCODE value, a corresponding SQL error message, and any additional
InterBase error messages in the error status vector.

Syntax void isc_print_sqlerror(

short SQLCODE,

ISC_STATUS *status_vector);

Description During the processing of DSQL API calls, SQL errors can occur. SQL errors are generally
reported in a variable called SQLCODE. DSQL calls return error information to a
user-defined error status vector like any other API call, but isc_print_sqlerror() can be used
to interpret the primary error condition as an SQL error message for direct display on
the screen. To use isc_print_sqlerror(), an application must declare both an SQLCODE
variable for holding the SQL error number, and an error status vector for holding
InterBase error information. isc_print_sqlerror() displays the SQLCODE value, a related SQL
error message, and any additional InterBase error messages in the status array.

Parameter Type Description

SQLCODE short Variable containing an SQLCODE value

status_vector ISC_STATUS * Pointer to the error status vector

CHAPTER 12 API FUNCTION REFERENCE

314 INTERBASE 5

Note Some windowing systems do not permit direct screen writes. Do not use
isc_print_sqlerror() when developing applications for these environments. Instead, use
isc_sql_interprete() and isc_interprete() to capture messages to a buffer for display.

Example The following code calls isc_print_sqlerror() when an error occurs:

#include <ibase.h>

long SQLCODE;

ISC_STATUS status_vector[20];

. . .

if (status_vector[0] == 1 && status_vector[1])

{

SQLCODE = isc_sqlcode(status_vector);

isc_print_sqlerror(SQLCODE, status_vector);

}

Return Value None.

See Also isc_interprete(), isc_print_status(), isc_sql_interprete(), isc_sqlcode()

isc_print_status()
Builds and displays error messages based on the contents of the InterBase error status
vector.

Syntax ISC_STATUS isc_print_status(ISC_STATUS *status_vector);

Description isc_print_status() builds all error messages based on the contents of the error status vector,
and displays them on the screen. status_vector must be declared in the program as an
array of twenty elements.

Example The following code displays error messages when an error occurs during processing:

#include <ibase.h>

ISC_STATUS status_vector[20];

. . .

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

USING FUNCTION DEFINITIONS

API GUIDE 315

return(1);

}

Return Value isc_print_status() returns the second element of the status vector. Zero indicates success. A
nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_interprete(), isc_print_sqlerror(), isc_sqlcode(), isc_sql_interprete()

isc_put_segment()
Writes a Blob segment.

Syntax ISC_STATUS isc_put_segment(

ISC_STATUS *status_vector,

isc_blob_handle *blob_handle,

unsigned short seg_buffer_length,

char *seg_buffer);

Description isc_put_segment() writes a Blob segment in seg_buffer_address to a Blob previously
created and opened with isc_create_blob2().

If a Blob filter was specified when the Blob was created, then each segment is filtered
before storing the result into the Blob.

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

blob_handle isc_blob_handle * Pointer to the handle of the Blob to which you want
to write; use isc_create_blob2() to set a value for this
handle

seg_buffer_length unsigned short Length of the Blob segment buffer

seg_buffer_address char * Pointer to the Blob segment buffer that contains
data for writing

CHAPTER 12 API FUNCTION REFERENCE

316 INTERBASE 5

The behavior of isc_put_segment() depends on what call preceded it. If the most recent call
was to isc_create_blob() or isc_create_blob2(), then a call to isc_put_segment() writes the first
segment of the Blob. If the most recent call was to isc_put_segment(), then it writes the next
segment.

You can write bitmaps and other binary files directly, without filtering, unless you intend
to change from one format to another, say from .GEM to .BMP. You can also store
compressed bitmaps directly in a database, in formats such as .JPG (JPEG), .BMP (Windows
native bitmaps), or .GIF (CompuServe Graphic Interchange Format).

You can store bitmaps in your database in row-major or column-major order.

You cannot update a Blob directly. If you want to modify Blob data, you must do one of
the following:

g Create a new Blob.

g Read the old Blob data into a buffer where you can edit or modify it.

g Write the modified data to the new Blob.

g Prepare and execute an UPDATE statement that will modify the Blob column to contain
the Blob ID of the new Blob, replacing the old Blob’s Blob ID.

For more information about creating and writing Blob data, see Chapter 7, “Working
with Blob Data.”

Note To read a segment that you wrote with a call to isc_put_segment(), you must close the
Blob with isc_close_blob(), and then open it with isc_open_blob2().

Example The following example reads a segment of one Blob and writes it to another Blob:

get_status = isc_get_segment(status, &from_blob, &seg_len, 80,

buffer);

if (status[0] == 1 && status[1])

{

isc_print_status(status);

return(1);

}

if (get_status != isc_segstr_eof)

write_status = isc_put_segment(status, &to_blob, seg_len, buffer);

if (status[0] == 1 && status[1])

{

isc_print_status(status);

return(1);

}

USING FUNCTION DEFINITIONS

API GUIDE 317

Return Value isc_put_segment() returns the second element of the status vector. Zero indicates success.
A nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_close_blob(), isc_get_segment(), isc_open_blob2()

isc_que_events()
Requests asynchronous notification of one of a specified group of events.

Syntax ISC_STATUS isc_que_events(

ISC_STATUS *status_vector,

isc_db_handle *db_handle,

ISC_LONG *event_id,

short length,

char *event_buffer,

isc_callback event_function,

void *event_function_arg);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

db_handle isc_db_handle * Pointer to a database handle set by a previous call to
isc_attach_database(); the handle identifies the
database against which the events are expected to be
posted

db_handle returns an error in status_vector if it is NULL

event_id ISC_LONG * Pointer to an event identifier to set

length short Length of the event parameter buffers, returned by
the isc_event_block() call which allocated them

CHAPTER 12 API FUNCTION REFERENCE

318 INTERBASE 5

Description isc_que_events() is called to request asynchronous notification of any of the events listed
in event_buffer. Upon completion of the call, but before events are posted, control is
returned to the calling application, which can continue other processing. When a
requested event is posted, InterBase calls the function specified in event_function to
process event occurrence.

After event_function is called, you must call isc_que_events() again if you want to start
another asynchronous wait on the specified events.

Note isc_que_events() cannot be called from within event_function.

If you want to cancel your isc_que_events() request for asynchronous event notification,
call isc_cancel_events().

Note To request synchronous notification, call isc_wait_for_event().

Example The following program fragment illustrates calling isc_que_events() to wait
asynchronously for event occurrences. Within a loop, it performs other processing, and
checks the event flag (presumably set by the specified event function) to determine
when an event has been posted. If one has, the program resets the event flag, calls
isc_event_counts() to determine which events have been posted since the last call to
isc_que_events(), and calls isc_que_events() to initiate another asynchronous wait.

#include <ibase.h>

#define number_of_stocks 3;

#define MAX_LOOP 10

char *event_names[] = {"DEC", "HP", "SUN"};

char *event_buffer, *result_buffer;

ISC_STATUS count_array[number_of_stocks];

short length;

ISC_LONG event_id;

event_buffer char * Pointer to the event parameter buffer that specifies
the current counts of the events to be waited on; this
buffer should have been initially allocated and filled
in by a call to isc_event_block()

event_function isc_callback Pointer to the address of the function to receive event
notification

event_function_arg void * First argument to be passed to event_function,
usually a pointer to the event parameter buffer you
want filled in with updated event counts

Parameter Type Description

USING FUNCTION DEFINITIONS

API GUIDE 319

int i, counter;

int event_flag = 0;

length = (short)isc_event_block(

&event_buffer,

&result_buffer,

number_of_stocks,

"DEC", "HP", "SUN");

isc_que_events(

status_vector,

&database_handle, /* Set in previous isc_attach_database(). */

&event_id,

length, /* Returned from isc_event_block(). */

event_buffer,

(isc_callback)event_function,

result_buffer);

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector); /* Display error message. */

return(1);

};

counter = 0;

while (counter < MAX_LOOP)

{

counter++;

if (!event_flag)

{

/* Do whatever other processing you want. */

;

}

else

{ event_flag = 0;

isc_event_counts(

count_array,

length,

event_buffer,

result_buffer);

if (status_vector[0] == 1 && status_vector[1])

{

CHAPTER 12 API FUNCTION REFERENCE

320 INTERBASE 5

isc_print_status(status_vector); /* Display error message.

*/

return(1);

}

for (i=0; i<number_of_stocks; i++)

if (count_array[i])

{

/* The event has been posted. Do whatever is appropriate,

for example, initiating a buy or sell order.

Note: event_names[i] tells the name of the event

corresponding to count_array[i]. */

;

}

isc_que_events(

status_vector,

&database_handle,

&event_id,

length,

event_buffer,

(isc_callback)event_function,

result_buffer);

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector); /* Display error message.

*/

return(1);

}

} /* End of else. */

} /* End of while. */

/* Let InterBase know you no longer want to wait asynchronously. */

isc_cancel_events(

status_vector,

&database_handle,

&event_id);

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector); /* Display error message. */

return(1);

}

USING FUNCTION DEFINITIONS

API GUIDE 321

Return Value isc_que_events() returns the second element of the status vector. Zero indicates success. A
nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_cancel_events(), isc_event_block(), isc_event_counts(), isc_wait_for_event()

For more information about writing an asynchronous event trap (AST) function, see
Chapter 11, “Working with Events.”

isc_rollback_transaction()
Undoes changes made by a transaction, and restores the database to its state prior to the
start of the specified transaction.

Syntax ISC_STATUS isc_rollback_transaction(

ISC_STATUS *status_vector,

isc_tr_handle *trans_handle);

Description isc_rollback_transaction() rolls back a specified transaction, closes record streams, frees
system resources, and sets the transaction handle to zero. It is typically used to undo all
database changes made by a transaction when an error occurs.

A call to this function can fail only if:

g You pass a NULL or invalid transaction handle.

g The transaction dealt with more than one database and a communications link fails
during the rollback operation. If that happens, subtransactions on the remote node will
end up in limbo. You must use the database maintenance utility to manually roll back
those transactions.

Example The following call rolls back a transaction:

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been set by a
previous isc_start_transaction() call; trans_handle returns an
error if NULL

CHAPTER 12 API FUNCTION REFERENCE

322 INTERBASE 5

isc_rollback_transaction(status_vector, &trans);

Return Value isc_rollback_transaction() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_commit_transaction()

isc_sqlcode()
Translates an InterBase error code in the error status vector to an SQL error code number.

Syntax ISC_LONG isc_sqlcode (ISC_STATUS *status_vector);

Description isc_sqlcode() searches status_vector for a reported SQL error, and if it finds it, translates
the InterBase error code number into an appropriate SQL error code. Typically, this call
is used to populate a program variable (usually called SQLCODE for portability among
SQL implementations) with an SQL error number for use in an SQL error-handling
routine.

Example The following code illustrates how isc_sqlcode() might be called in a DSQL application:

#include <ibase.h>

long SQLCODE;

ISC_STATUS status_vector[20];

. . .

if (status_vector[0] == 1 && status_vector[1])

{

SQLCODE = isc_sqlcode(status_vector);

isc_print_sqlerror(SQLCODE, status_vector);

}

Return Value If successful, isc_sqlcode() returns the first valid SQL error code decoded from the
InterBase status vector.

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

USING FUNCTION DEFINITIONS

API GUIDE 323

If no valid SQL error code is found, isc_sqlcode() returns –999.

See Also isc_interprete(), isc_print_sqlerror(), isc_print_status(), isc_sql_interprete()

isc_sql_interprete()
Builds an SQL error message string and stores it in a user-defined buffer.

Syntax void isc_sql_interprete(

short SQLCODE,

char *buffer,

short buffer_length);

Description Given an SQLCODE value less than zero, isc_sql_interprete() builds a corresponding SQL
error message string, and stores it in a user-defined buffer. The size of the buffer, in
bytes, must also be passed to this function.

To display an SQL error message corresponding to an SQLCODE value, use
isc_print_sqlerror() instead of this call.

Example The following code fragment illustrates a call to isc_sql_interprete():

#include <ibase.h>

long SQLCODE;

char err_buf[256];

. . .

if (status_vector[0] == 1 && status_vector[1])

{

SQLCODE = isc_sqlcode(status_vector);

isc_sql_interprete(SQLCODE, err_buf, sizeof(err_buff));

}

Return Value None.

See Also isc_interprete(), isc_print_sqlerror(), isc_print_status(), isc_sqlcode()

Parameter Type Description

SQLCODE short Variable containing an SQLCODE value

buffer char * Application buffer into which to store an SQL error message

buffer_length short Length, in bytes, of buffer

CHAPTER 12 API FUNCTION REFERENCE

324 INTERBASE 5

isc_start_multiple()
Begins a new transaction against multiple databases.

Syntax ISC_STATUS isc_start_multiple(

ISC_STATUS *status_vector,

isc_tr_handle *trans_handle,

short db_handle_count,

void *teb_vector_address);

Description Call isc_start_multiple() if you:

g Are using a language that does not support a variable number of arguments in a function
call.

g Do not know how many databases you want to attach to when coding the start
transaction function.

isc_start_multiple() passes information about each target database to InterBase. That
information is stored in an array of transaction existence blocks (TEBs) pointed to by the
teb_vector parameter.

teb_vector is a pointer to a byte array that consists of consecutive TEBs, one TEB for each
database to connect to. Each TEB consists of three items: a pointer to the database handle
for a database against which the transaction should run; the length, in bytes, of the
transaction parameter buffer (TPB) for the database, and a pointer to the TPB. The items
in a TEB correspond to the items passed directly as parameters in calls to
isc_start_transaction(). C programmers should use isc_start_transaction() instead of
isc_start_multiple() whenever possible because it does not require setting up TEBs.

For more information about establishing TEBs and calling isc_start_multiple(), see “Calling
isc_start_multiple()” on page 69 of Chapter 5, “Working with Transactions.”

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been
set by a previous isc_start_transaction() call;
trans_handle returns an error if NULL

db_handle_count short Number of database handles passed in this call via
transaction existence buffers (TEBs)

teb_vector_address void * Pointer to the TEB

USING FUNCTION DEFINITIONS

API GUIDE 325

Example The following program starts a multiple-database transaction:

#include <ibase.h>

typedef struct { /* Define the ISC_TEB structure. */

int *dbb_ptr;

longtpb_len;

char*tpb_ptr;

} ISC_TEB;

ISC_TEB teb_vec[2]; /* Declare the TEB vector. */

ISC_STATUS isc_status[20]; /* Status vector. */

long *db0, *db1, /* Database handle. */

long *trans; /* Transaction handle. */

static char

isc_tpb_0[] = { /* Declare the first transaction parameter

buffer. */

isc_tpb_version3, /* InterBase version. */

isc_tpb_write,/* Read-write access. */

isc_tpb_consistency, /* Serializable. */

isc_tpb_wait, /* Wait on lock. */

isc_tpb_lock_write, 3, /* Reserving IDS for update. */

’I’,’D’,’S’,

isc_tpb_protected},/* Don’t allow other transactions to

write to the table. */

isc_tpb_1[] = { /* Declare the second transaction.*/

/* Parameter buffer. */

isc_tpb_version3, /* InterBase version. */

isc_tpb_write,/* Read-write access. */

isc_tpb_consistency, /* Serializable. */

isc_tpb_wait, /* Wait on lock. */

isc_tpb_lock_write, 3, /* Reserving table OZS for update. */

’O’,’Z’,’S’,

isc_tpb_protected};/* Don’t allow other transactions to

write to the table. */

main()

{

db0 = db1 = 0;

CHAPTER 12 API FUNCTION REFERENCE

326 INTERBASE 5

trans = 0;

/* If you can’t attach to test_0 database, attach to test_1. */

isc_attach_database(isc_status, 0, "test_0.gdb", &db0, 0,0);

if (isc_status[0] == 1 && isc_status[1])

isc_attach_database(isc_status, 0, "test_1.gdb", &db1, 0,0);

if (db0 && db1)

{ /* Assign database handles, tpb length, and

tbp handle to the teb vectors. */

teb_vec[0].dbb_ptr = &db0;

teb_vec[0].tpb_len = sizeof (isc_tpb_0);

teb_vec[0].tpb_ptr = isc_tpb_0;

teb_vec[1].dbb_ptr = &db1;

teb_vec[1].tpb_len = sizeof (isc_tpb_1);

teb_vec[1].tpb_ptr = isc_tpb_1;

if (isc_start_multiple(isc_status, &trans, 2, teb_vec))

isc_print_status(isc_status);

}

if (trans)

isc_commit_transaction(isc_status, &trans);

if (db0 && !trans)

isc_detach_database(isc_status, &db0);

if (db1 && !(trans && db0))

isc_detach_database(isc_status, &db1);

if (isc_status[0] == 1 && isc_status[1])

isc_print_status(isc_status);

}

Return Value isc_start_multiple() returns the second element of the status vector. Zero indicates success.
A nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to an InterBase error code.

USING FUNCTION DEFINITIONS

API GUIDE 327

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_commit_transaction(), isc_prepare_transaction(),
isc_prepare_transaction2(), isc_rollback_transaction(), isc_start_transaction()

For more information about transaction handles, see “Creating transaction handles”
on page 58 of Chapter 5, “Working with Transactions.” For more information about
creating and populating a TPB, see “Creating a transaction parameter buffer” on
page 60 of Chapter 5, “Working with Transactions.” For more information on TEBs,
see “Calling isc_start_multiple()” on page 69 of Chapter 5, “Working with
Transactions.”

isc_start_transaction()
Starts a new transaction against one or more databases.

Syntax ISC_STATUS isc_start_transaction(

ISC_STATUS *status_vector,

isc_tr_handle *trans_handle,

short db_handle_count,

isc_db_handle *db_handle,

unsigned short tpb_length,

char *tpb_address,

[isc_db_handle *db_handle,

unsigned short tpb_length,

char *tpb_address ...]);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been
set by a previous isc_start_transaction() call;
trans_handle returns an error if NULL

db_handle_count short Number of database handles passed in this call

CHAPTER 12 API FUNCTION REFERENCE

328 INTERBASE 5

Description isc_start_transaction() starts a new transaction against one or more databases specified as
database handles.

Note If you have a variable number of databases to update, or are using a language that
does not support a variable number of arguments in a function call, use isc_start_multiple()
instead of isc_start_transaction().

A single transaction can access multiple databases. This function passes information
about each database it accesses and the conditions of access for that database in a
transaction parameter buffer (TPB). The TPB is a variably-sized vector of bytes declared
and populated by the program. It contains information describing intended transaction
behavior such as its access and lock modes.

isc_start_transaction() can start a transaction against up to 16 databases. You must pass a
database handle and a TPB for each referenced database. If you want to use defaults for
the transaction, set tpb_length to zero. In this case, tpb_vector is a NULL pointer.

Example The following program includes a call to the start transaction function:

#include <ibase.h>

long

isc_status[20], /* Status vector. */

db, / Database handle. */

trans, / Transaction handle. */

static char

isc_tpb_0[] = {

isc_tpb_version3, /* InterBase version. */

isc_tpb_write,/* Read-write access. */

isc_tpb_consistency, /* Consistency-mode transaction. */

isc_tpb_wait, /* Wait on lock. */

isc_tpb_lock_write, 3, /* Reserving IDS table for update. */

db_handle isc_db_handle * Pointer to a database handle set by a previous call to
isc_attach_database(); the handle identifies the
database against which the events are expected to be
posted

db_handle returns an error in status_vector if it is NULL

tpb_length unsigned short Length of the transaction parameter buffer (TPB)

tpb_address char * Pointer to the TPB

Parameter Type Description

USING FUNCTION DEFINITIONS

API GUIDE 329

"I","D","S",

isc_tpb_protected};/* Don’t allow other transactions to

write against this table. */

main()

{

db = trans = 0;

isc_attach_database(isc_status, 0, "test.gdb", &db, 0,0);

if (db)

{

isc_start_transaction(

isc_status, &trans, 1, &db,

sizeof(isc_tpb_0), isc_tpb_0);

if (isc_status[0] == 1 && isc_status[1])

isc_print_status(isc_status);

}

if (trans)

isc_commit_transaction(isc_status, &trans);

if (db && !trans)

isc_detach_database(isc_status, &db);

if (status_vector[0] == 1 && status_vector[1])

isc_print_status(isc_status);

}

Return Value isc_start_transaction() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_commit_transaction(), isc_prepare_transaction(),
isc_prepare_transaction2(), isc_rollback_transaction(), isc_start_multiple()

For more information about transaction handles, see “Creating transaction handles”
on page 58 of Chapter 5, “Working with Transactions.” For more information about
creating and populating a TPB, see “Creating a transaction parameter buffer” on
page 60 of Chapter 5, “Working with Transactions.”

CHAPTER 12 API FUNCTION REFERENCE

330 INTERBASE 5

isc_transaction_info()
Returns information about the specified named transaction.

Syntax ISC_STATUS isc_transaction_info(

ISC_STATUS *status_vector,

isc_tr_handle *trans_handle,

short item_list_buffer_length,

char *item_list_buffer,

short result_buffer_length,

char *result_buffer);

Description isc_transaction_info() returns information necessary for keeping track of transaction IDs.
This call is used internally by isc_prepare_transaction(). You should not need to use it in
your own applications.

You can explicitly retrieve information about the transaction ID by including the
following constant in the item-list buffer, where the transaction items about which you
want information are listed:

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been
set by a previous isc_start_transaction() call;
trans_handle returns an error if NULL

item_list_buffer_length short Number of bytes in the item-list buffer

item_list_buffer char * Pointer to the item-list buffer

result_buffer_length short Number of bytes in the result buffer

result_buffer char * Pointer to the result buffer

Item Purpose Size of next value Value

isc_info_tra_id Determine the transaction ID 2 bytes transaction ID

TABLE 12.20 Transaction information request item

USING FUNCTION DEFINITIONS

API GUIDE 331

isc_transaction_info() uses two buffers defined in the calling program: the item-list buffer,
which lists transaction items about which you want information, and a result buffer,
where the information requested is reported.

To define the item-list buffer, include the parameters item_list_buffer_length and
item_list_buffer_address. The item-list buffer is a regular byte vector with no structure.

To define the result buffer, include the parameters result_buffer_length and
result_buffer_address. These parameters specify the length and address of a buffer where
the InterBase engine will place the return values from the function call.

The values returned to the result buffer are unaligned clusters of generic binary numbers.
Furthermore, all numbers are represented in a generic format, with the least significant
byte first, and the most significant byte last. Signed numbers have the sign in the last byte.
Convert the numbers to a datatype native to your system before interpreting them.

In your call, include the item specifying the transaction ID, isc_info_tra_id. InterBase
returns the transaction ID in the result buffer. In addition to the information InterBase
returns in response to a request, InterBase can also return one or more of the following
status messages to the result buffer. Each status message is one unsigned byte in length:

The function return value indicates only that InterBase accepted the request for
information. It does not mean that it understood the request or that it supplied all of the
requested information. Your application must interpret the contents of the result buffer
for details about the transaction.

Example The following code fragment gets information about a transaction:

static char /* Declare item-list buffer. */

tra_items[] =

{isc_info_tra_id};

/* Declare result buffer. */

CHAR tra_info[32];

Item Description

isc_info_end End of the messages

isc_info_truncated Result buffer is too small to hold any more requested information

isc_info_error Requested information is unavailable; check the status vector for an
error code and message

TABLE 12.21 Status message return items

CHAPTER 12 API FUNCTION REFERENCE

332 INTERBASE 5

isc_transaction_info(status_vector,

&tr_handle,

sizeof (tra_items), /* Length of item-list buffer. */

&tra_items, /* Address of item-list buffer. */

sizeof (tra_info), /* Length of result buffer. */

&tra_info); /* Address of result buffer. */

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector);

return(1);

}

Return Value isc_transaction_info() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_start_transaction()

isc_vax_integer()
Reverses the byte order of an integer.

Syntax ISC_LONG isc_vax_integer(

char *buffer,

short length);

Description isc_vax_integer() reverses the byte order of an integer, specified in buffer, and returns the
newly ordered value.

Parameter Type Description

buffer char * Pointer to the integer to convert

length short Length, in bytes, of the integer to convert

Valid lengths are 1, 2, and 4 bytes

USING FUNCTION DEFINITIONS

API GUIDE 333

A typical use for this function is to convert integer values passed into a database
parameter buffer to a format where the least significant byte must be first and the most
significant byte last. In InterBase, integer values must be represented in input parameter
buffers (for example, the DPB) and are returned in result buffers in a generic format
where the least significant byte is first, and the most significant byte last. isc_vax_integer()
is used to convert integers to and from this format.

Example The following code fragment converts a 2-byte value, stored in a character buffer that is
the result buffer returned by a function such as isc_database_info():

#include <ibase.h>

char *p;

. . .

for(p = res_buffer; *p != isc_info_end;)

{

/* Read item type of next cluster in the result buffer. */

item = *p++;

/* Read length of next value in result buffer, and convert. */

len = isc_vax_integer(p, 2);

p += len;

/* Now process the actual value, len bytes in size. */

. . .

}

Return Value isc_vax_integer() always returns a byte-reversed long integer value.

See Also isc_attach_database(), isc_database_info()

CHAPTER 12 API FUNCTION REFERENCE

334 INTERBASE 5

isc_version()
Returns database implementation and version information.

Syntax int isc_version(

isc_db_handle *db_handle,

isc_callback function_name,

void *user_arg);

Description isc_version() determines the database implementation and on-disk structure (ODS)
version numbers for the database specified by db_handle. It passes this information in
two separate calls to the callback function pointed to by function_name.

function_name should point to an application function that takes two arguments: a void
pointer, user_arg, and a char pointer. Applications can pass any kind of parameter
desired in user_arg.

isc_version() makes two calls to function_name. First it determines the database
implementation number, builds a string containing the information, and calls
function_name with user_arg, and a pointer to the string containing the implementation
number in the following format:

<implementation>(<class>), version "<version>"

where:

g <implementation> is a text string, such as “InterBase/NT”.

g <class> is a text string specifying the implementation class, such as “access method”.

g <version> is a version identification string, such as “4.0”.

The callback function specified by function_name is free to do with this information
what it pleases.

Parameter Type Description

db_handle isc_db_handle * Pointer to a database handle set by a previous call to
isc_attach_database()

db_handle returns an error in status_vector if it is NULL

function_name isc_callback Pointer to a function to call with the relevant information;
passing a NULL pointer in C programs calls printf()

user_arg void * An application-specified parameter to pass as the first of
two arguments to function_name

USING FUNCTION DEFINITIONS

API GUIDE 335

After the callback function returns control to isc_version(), isc_version() builds a new string
containing the ODS major and minor version numbers, then calls function_name a
second time with user_arg, and a pointer to the string containing the ODS version
number in the following format:

on disk structure version <ods_major_num>.<ods_minor_num>

where:

g <ods_major_num> is the major ODS number. Databases with different major version
numbers have different physical layouts on disk and are incompatible with one another.
A database engine can only access databases with a particular ODS major number.

g <ods_minor_num> is the minor ODS number. Differences in the minor ODS number,
but not the major one indicate a non-structural change that still permits access by any
database engine that recognizes the major version number.

TIP If a NULL pointer is passed for function_name, isc_version() sets function_name to point
to the C printf() function.

Examples The following code fragment calls isc_version() with a NULL callback function:

#include <ibase.h>

. . .

int ret;

. . .

ret = isc_version(&db1, NULL, "\t%s\n");

Return Value If successful, isc_version() returns 0. Otherwise, it returns a nonzero value.

See Also isc_database_info()

CHAPTER 12 API FUNCTION REFERENCE

336 INTERBASE 5

isc_wait_for_event()
Waits synchronously until one of a specified group of events is posted.

Note The isc_wait_for_event() function was called gds_$event_wait() in InterBase 3.3. It is
therefore the only function that can’t be translated from 3.3 nomenclature to all later
versions by replacing gds_$ with isc_.

Syntax ISC_STATUS isc_wait_for_event(

ISC_STATUS *status_vector,

isc_db_handle *db_handle,

short length,

char *event_buffer,

char *result_buffer);

Description isc_wait_for_event() is used to wait synchronously until one of a specified group of events
is posted. Control is not returned to the calling application until one of the specified
events occurs.

Events to wait on are specified in event_buffer, which should have been initially allocated
and filled in by a previous call to isc_event_block().

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

db_handle isc_db_handle * Pointer to a database handle set by a previous call to
isc_attach_database(); the handle identifies the database
against which the events are expected to be posted

db_handle returns an error in status_vector if it is NULL

length short Length of the event parameter buffers, returned by the
isc_event_block() call which allocated them

event_buffer char * Pointer to the event parameter buffer that specifies the
current counts of the events to be waited on; this buffer
should have been initially allocated and filled in by a call to
isc_event_block()

result_buffer char * Pointer to the event parameter buffer to be filled in with
updated event counts as a result of this function call; this
buffer should have been initially allocated by a call to
isc_event_block()

USING FUNCTION DEFINITIONS

API GUIDE 337

When one of these events is posted, isc_wait_for_event() fills in result_buffer with data that
exactly corresponds to that in the initial buffer, except that the event counts will be the
updated ones. Control then returns from isc_wait_for_event() to the calling application. The
application should then call isc_event_counts() to determine which event was posted.

Note To request asynchronous notification of event postings, use isc_que_events() instead
of isc_wait_for_event(). You must use asynchronous notifications in Microsoft Windows
applications, or wherever a process must not stop processing.

Example The following program fragment illustrates a call to isc_wait_for_event() to wait for a
posting of any of the events named “DEC”, “HP”, or “SUN”.

#include <ibase.h>

#define number_of_stocks 3;

char *event_buffer, *result_buffer;

short length;

length = (short)isc_event_block(

&event_buffer,

&result_buffer,

number_of_stocks,

"DEC", "HP", "SUN");

isc_wait_for_event(

status_vector,

&database_handle,

length, /* Returned from isc_event_block(). */

event_buffer,

result_buffer);

if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector); /* Display error message. */

return(1);

}

/* Call isc_event_counts() to compare event counts in the buffers and

thus determine which event(s) were posted. */

Return Value isc_wait_for_event() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

CHAPTER 12 API FUNCTION REFERENCE

338 INTERBASE 5

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_event_block(), isc_que_events()

API GUIDE 339

APPENDIX

A
Appendix AInterBase Document

Conventions

This appendix describes the InterBase 5 documentation set, the printing conventions
used to display information in text and in code examples, and conventions for naming
database objects and files in applications.

APPENDIX A INTERBASE DOCUMENT CONVENTIONS

340 INTERBASE 5

The InterBase documentation set
The InterBase documentation set is an integrated package designed for all levels of users.
It consists of five printed books. Each of these books is also provided in Adobe Acrobat
PDF format and is accessible on line through the Help menu. If Adobe Acrobat is not
already installed on your system, you can find it on the InterBase distribution CD-ROM
or at http//www.adobe.com/prodindex/acrobat/readstep.html. Acrobat is available for
Windows NT, Windows 95, and most flavors of UNIX. Windows users also have help
available through the WinHelp system.

Book Description

Operations Guide Provides an introduction to InterBase and an explanation of tools and
procedures for performing administrative tasks on databases and database
servers. Also includes full reference on InterBase utilities, including isql,
gbak, Server Manager for Windows, and others.

Data Definition Guide Explains how to create, alter, and delete database objects through ISQL.

Language Reference Describes SQL and DSQL syntax and usage.

Programmer’s Guide Describes how to write embedded SQL and DSQL database applications in
a host language, precompiled through gpre.

API Guide Explains how to write database applications using the InterBase API.

TABLE A.1 Books in the InterBase 5 documentation set

PRINTING CONVENTIONS

API GUIDE 341

Printing conventions
The InterBase documentation set uses various typographic conventions to identify objects
and syntactic elements.

The following table lists typographic conventions used in text, and provides examples of
their use:

Convention Purpose Example

UPPERCASE SQL keywords, SQL functions, and names of
all database objects such as tables, columns,
indexes, and stored procedures.

The following SELECT statement retrieves data from
the CITY column in the CITIES table.

italic New terms, emphasized words, file names,
and host- language variables.

The isc4.gdb security database is not accessible
without a valid user name and password.

bold Utility names, user-defined functions, and
host-language function names. Function
names are always followed by parentheses to
distinguish them from utility names.

Use gbak to back up and restore a database.

Use the datediff() function to calculate the
number of days between two dates.

TABLE A.2 Text conventions

APPENDIX A INTERBASE DOCUMENT CONVENTIONS

342 INTERBASE 5

Syntax conventions
The following table lists the conventions used in syntax statements and sample code, and
provides examples of their use:

Convention Purpose Example

UPPERCASE Keywords that must be typed exactly as
they appear when used.

SET TERM !!;

italic Parameters that cannot be broken into
smaller units. For example, a table name
cannot be subdivided.

CREATE GENERATOR name;

<italic> Parameters in angle brackets that can be
broken into smaller syntactic units.

WHILE (<condition>) DO <compound_statement>

[] Optional syntax: you do not need to
include anything that is enclosed in
square brackets.

CREATE [UNIQUE][ASCENDING|DESCENDING]

{ } One of the enclosed options must be
included in actual statement use. If the
contents are separated by a pipe symbol
(|), you must choose only one.

{SMALLINT | INTEGER | FLOAT | DOUBLE
PRECISION}

| You can choose only one of a group
whose elements are separated by this
pipe symbol.

When objects separated by this symbol
occur within curly brackets, you must
choose one; when they are within
square brackets you can choose one or
none.

SET {DATABASE | SCHEMA}

SELECT [DISTINCT |ALL]

... The clause enclosed in brackets with the
… symbol can be repeated as many
times as necessary.

(<col> [,<col>…])

TABLE A.3 Syntax conventions

API GUIDE 343

APPENDIX

B
Appendix BData Structures

This appendix documents the data structures, compile-time constants, parameter buffers,
and information buffers utilized in InterBase API applications.

This information also appears throughout the rest of this API Guide, but is consolidated
here as a convenience. See other sections of this manual for more information.

All the structures and compile-time constants mentioned are defined in the ibase.h
header file. Items are documented alphabetically, as follows:

g Array descriptor

g Blob descriptor

g Blob information item-list buffer and result buffer

g Blob parameter buffer

g Database information request buffer and result buffer

g Database parameter buffer

g SQL datatype macro constants

g Status vector

g Transaction parameter buffer

g XSQLDA and XSQLVAR structures

APPENDIX B DATA STRUCTURES

344 INTERBASE 5

Array descriptor
An array descriptor ISC_ARRAY_DESC is a structure defined in the ibase.h header file as:

typedef struct {

unsigned char array_desc_dtype;

char array_desc_scale;

unsigned short array_desc_length;

char array_desc_field_name [32];

char array_desc_relation_name [32];

short array_desc_dimensions;

short array_desc_flags;

ISC_ARRAY_BOUND array_desc_bounds [16];

} ISC_ARRAY_DESC;

ISC_ARRAY_BOUND is defined as:

typedef struct {

short array_bound_lower; /* lower bound */

short array_bound_upper; /* upper bound */

} ISC_ARRAY_BOUND;

Field Description

array_desc_dtype Datatype (see below)

array_desc_scale Scale for numeric datatypes

array_desc_length Length in bytes of each array element

array_desc_field_name NULL-terminated column name

array_desc_relation_name NULL-terminated relation name

array_desc_dimensions Number of array dimensions

array_desc_flags Specifies whether array is to be accessed in row- major or column-major
order

• 0: row-major
• 1: column-major

array_desc_bounds Lower and upper bounds for each dimension

TABLE B.1 Array descriptor fields

DATATYPES FOR ARRAY DESCRIPTORS

API GUIDE 345

Datatypes for array descriptors
The array_desc_dtype field of an array descriptor must be expressed as one of the
datatypes in the following table:

Blob descriptor
A Blob descriptor is defined as:

typedef struct {

 short blob_desc_subtype;

 short blob_desc_charset;

 short blob_desc_segment_size;

 unsigned char blob_desc_field_name [32];

array_desc_dtype
value Corresponding InterBase datatype

blr_text CHAR

blr_text2 CHAR

blr_short SMALLINT

blr_long INTEGER

blr_quad ISC_QUAD structure

blr_float FLOAT

blr_double DOUBLE PRECISION

blr_date DATE

blr_varying VARCHAR

blr_varying2 VARCHAR

blr_blob_id ISC_QUAD structure

blr_cstring NULL-terminated string

blr_cstring2 NULL-terminated string

TABLE B.2 Datatypes for array descriptors

APPENDIX B DATA STRUCTURES

346 INTERBASE 5

 unsigned char blob_desc_relation_name [32];

} ISC_BLOB_DESC;

Character sets
InterBase supports a number of character sets. For a list of the character sets supported,
and the character set value that must be entered in the blob_desc_charset field of a Blob
descriptor, see the Data Definition Guide.

Blob information buffers
The isc_blob_info() call enables an application to query for Blob information such as the
total number of segments in the Blob, or the length of the longest segment.

isc_blob_info() requires two application-provided buffers, an item-list buffer, where the
application specifies the information it needs, and a result buffer, where InterBase returns
the requested information. An application populates the item-list buffer with information
prior to calling isc_blob_info(). InterBase returns information in the result buffer. If
InterBase attempts to pass back more information than can fit in the result buffer, it puts
the value, isc_info_truncated, defined in ibase.h, in the final byte of the result buffer.

Field Description

blob_desc_subtype Type of Blob data

0: unstructured

1: TEXT

negative integer between –1 and –32678: user-defined subtype

blob_desc_charset Character set (see below)

blob_desc_segment_size Segment size

blob_desc_field_name NULL-terminated column name

blob_desc_relation_name NULL-terminated table name

TABLE B.3 Blob descriptor fields

BLOB DESCRIPTOR

API GUIDE 347

4 Item-list buffer
The item-list buffer is a byte vector into which is placed a sequence of byte values, one
per requested item of information. Each byte is an item type, specifying the kind of
information desired. Compile-time constants for all item types are defined in ibase.h:

#define isc_info_blob_num_segments 4

#define isc_info_blob_max_segment 5

#define isc_info_blob_total_length 6

#define isc_info_blob_type 7

4 Result buffer
The result buffer is a byte vector in which InterBase returns a series of clusters of
information, one per item requested. Each cluster consists of three parts:

1. A one-byte item type. Each is the same as one of the item types in the item-list
buffer.

2. A 2-byte number specifying the number of bytes that follow in the remainder
of the cluster.

3. A value, stored in a variable number of bytes, whose interpretation depends
on the item type.

A calling program is responsible for interpreting the contents of the result buffer and for
deciphering each cluster as appropriate.

The clusters returned to the result buffer are not aligned. Furthermore, all numbers are
represented in a generic format, with the least significant byte first, and the most
significant byte last. Signed numbers have the sign in the last byte. Convert the numbers
to a datatype native to your system, if necessary, before interpreting them. The API call,
isc_vax_integer(), can be used to perform the conversion.

APPENDIX B DATA STRUCTURES

348 INTERBASE 5

Blob buffer items
The following table lists items about which information can be requested and returned,
and the values reported:

In addition to the information InterBase returns in response to a request, InterBase can
also return one or more of the following status messages to the result buffer. Each status
message is one unsigned byte in length:

Blob parameter buffer
A Blob Parameter Buffer (BPB) is an application-defined byte vector, passed as an
argument to isc_open_blob2() or isc_create_blob2(), that specifies Blob attributes required for
filtering Blob data.

A BPB consists of the following parts:

1. A byte specifying the version of the parameter buffer, always the
compile-time constant, isc_bpb_version1.

2. A contiguous series of one or more clusters of bytes, each describing a single
parameter.

Request and return item Return value

isc_info_blob_num_segments Total number of segments

isc_info_blob_max_segment Length of the longest segment

isc_info_blob_total_length Total size, in bytes, of Blob

isc_info_blob_type Type of Blob (0: segmented, or 1: stream)

TABLE B.4 Blob information items and return values

Item Description

isc_info_end End of the messages

isc_info_truncated Result buffer is too small to hold any more requested information

isc_info_error Requested information is unavailable. Check the status vector for an
error code and message

TABLE B.5 Status message return items

DATABASE INFORMATION REQUEST BUFFER AND RESULT BUFFER

API GUIDE 349

Each cluster consists of the following parts:

1. A one-byte parameter type. There are compile-time constants defined for all
the parameter types (for example, isc_bpb_target_type).

2. A one-byte number specifying the number of bytes that follow in the
remainder of the cluster.

3. A variable number of bytes, whose interpretation depends on the parameter
type.

All numbers in the Blob parameter buffer must be represented in a generic format, with
the least significant byte first, and the most significant byte last. Signed numbers should
have the sign in the last byte. The API function isc_vax_integer() can be used to reverse the
byte order of a number. For more information about isc_vax_integer(), see
“isc_vax_integer()” on page 332 of Chapter 12, “API Function Reference.”

The following table lists the parameter types and their meaning. For lists of the possible
subtypes and character sets, see “Blob descriptor” on page 345.

Database information request buffer and result buffer
The isc_database_info() call enables an application to query for information about an
attached database.

isc_database_info() requires two application-provided buffers, a request buffer, where the
application specifies the information it needs, and a result buffer, where InterBase returns
the requested information. An application populates the request buffer with information
prior to calling isc_database_info(). InterBase returns information in the result buffer. If
InterBase attempts to pass back more information than can fit in the result buffer, it puts
the value, isc_info_truncated, defined in ibase.h, in the final byte of the result buffer.

Parameter type Description

isc_bpb_target_type Target subtype

isc_bpb_source_type Source subtype

isc_bpb_target_interp Target character set

isc_bpb_source_interp Source character set

TABLE B.6 Blob parameter buffer parameter types

APPENDIX B DATA STRUCTURES

350 INTERBASE 5

Request buffer
The request buffer is a byte vector into which is placed a sequence of byte values, one
per requested item of information. Each byte is an item type, specifying the kind of
information desired. Compile-time constants for all item types are defined in ibase.h and
shown below.

Result buffer
The result buffer is a byte vector in which InterBase returns a series of clusters of
information, one per item requested. Each cluster consists of three parts:

1. A one-byte item return type. These are the same as the item types specified
in the request buffer.

2. A two-byte number specifying the number of bytes that follow in the
remainder of the cluster.

3. A value, stored in a variable number of bytes, whose interpretation (e.g., as
a number or as a string of characters) depends on the item return type.

A calling program is responsible for interpreting the contents of the result buffer and for
deciphering each cluster as appropriate. In many cases, the value simply contains a
number or a string (sequence of characters). But in other cases, the value is a number of
bytes whose interpretation depends on the item return type.

The clusters returned to the result buffer are not aligned. Furthermore, all numbers are
represented in a generic format, with the least significant byte first, and the most
significant byte last. Signed numbers have the sign in the last byte. Convert the numbers
to a datatype native to your system, if necessary, before interpreting them. The API call,
isc_vax_integer(), can be used to perform the conversion.

DATABASE INFORMATION REQUEST BUFFER AND RESULT BUFFER

API GUIDE 351

In addition to the information InterBase returns in response to a request, InterBase can
also return one or more of the following status messages to the result buffer. Each status
message is one unsigned byte in length:

Request buffer items and result buffer values
The following sections show the request buffer items and result buffer contents for the
following categories of database information:

g Database characteristics

g Environmental characteristics

g Performance statistics

g Database operation counts

Item Description

isc_info_end End of the messages

isc_info_truncated Result buffer is too small to hold any more requested information

isc_info_error Requested information is unavailable; check the status vector for an error
code and message

TABLE B.7 Status message return items

APPENDIX B DATA STRUCTURES

352 INTERBASE 5

4 Database characteristics
Several items are provided for determining database characteristics, such as its size and
major and minor ODS version numbers. The following table lists the request buffer items
that can be passed, and the information returned in the result buffer for each item type:

Request buffer item Result buffer contents

isc_info_allocation Number of database pages allocated

isc_info_base_level Database version (level) number:

1 byte containing the number 1

1 byte containing the version number

isc_info_db_id Database file name and site name:

• 1 byte containing the number 2
• 1 byte containing the length, d, of the database file name in bytes
• A string of d bytes, containing the database file name
• 1 byte containing the length, l, of the site name in bytes
• A string of l bytes, containing the site name

isc_info_implementation Database implementation number:

• 1 byte containing a 1
• 1 byte containing the implementation number
• 1 byte containing a “class” number, either 1 or 12

TABLE B.8 Database information items for database characteristics

DATABASE INFORMATION REQUEST BUFFER AND RESULT BUFFER

API GUIDE 353

isc_info_no_reserve 0 or 1

• 0 indicates space is reserved on each database page for holding
backup versions of modified records [Default]

• 1 indicates no space is reserved for such records

isc_info_ods_minor_version On-disk structure (ODS) minor version number; an increase in a
minor version number indicates a non-structural change, one that
still allows the database to be accessed by database engines with
the same major version number but possibly different minor
version numbers

isc_info_ods_version ODS major version number

• Databases with different major version numbers have different
physical layouts; a database engine can only access databases
with a particular ODS major version number

• Trying to attach to a database with a different ODS number
results in an error

isc_info_page_size Number of bytes per page of the attached database; use with
isc_info_allocation to determine the size of the database

isc_info_version Version identification string of the database implementation:

• 1 byte containing the number 1
• 1 byte specifying the length, n, of the following string
• n bytes containing the version identification string

Request buffer item Result buffer contents

TABLE B.8 Database information items for database characteristics (continued)

APPENDIX B DATA STRUCTURES

354 INTERBASE 5

4 Environmental characteristics
Several items are provided for determining environmental characteristics, such as the
amount of memory currently in use, or the number of database cache buffers currently
allocated. These items are described in the following table:

Not all environmental information items are available on all platforms.

4 Performance statistics
There are four items providing performance statistics for a database. These statistics
accumulate for a database from the moment it is first attached by any process until the
last remaining process detaches from the database. A program requesting this
information, therefore, sees information pertaining to its own attachment and all other
attachments.

For example, the value returned for isc_info_reads is the number of reads since the
current database was first attached: it is an aggregate of all reads done by all attached
processes, rather than the number of reads done for the calling program since it attached
to the database.

Request buffer item Result buffer contents

isc_info_current_memory Amount of server memory (in bytes) currently in use

isc_info_forced_writes Number specifying the mode in which database writes are performed
(0 for asynchronous, 1 for synchronous)

isc_info_max_memory Maximum amount of memory (in bytes) used at one time since the first
process attached to the database

isc_info_num_buffers Number of memory buffers currently allocated

isc_info_sweep_interval Number of transactions that are committed between “sweeps” to
remove database record versions that are no longer needed

isc_info_user_names NetWare only. Names of all the users currently attached to the
database; for each such user, the result buffer will contain an
isc_info_user_names byte followed by a 1-byte length specifying the
number of bytes in the user name, followed by the user name

TABLE B.9 Database information items for environmental characteristics

DATABASE INFORMATION REQUEST BUFFER AND RESULT BUFFER

API GUIDE 355

The items providing performance statistics are summarized in the following table:

4 Database operation counts
Several information items are provided for determining the number of various database
operations performed by the currently attached calling program. These values are
calculated on a per-table basis.

When any of these information items is requested, InterBase returns to the result buffer:

1. 1 byte specifying the item type (for example, isc_info_insert_count).

2. 2 bytes telling how many bytes compose the subsequent value pairs.

3. A pair of values for each table in the database on which the requested type
of operation has occurred since the database was last attached.

Each pair consists of:

- 2 bytes specifying the table ID.

- 4 bytes listing the number of operations (for example, inserts) done on that table.

To determine an actual table name from a table ID, query the RDB$RELATION system table.

Request buffer item Result buffer contents

isc_info_fetches Number of reads from the memory buffer cache

isc_info_marks Number of writes to the memory buffer cache

isc_info_reads Number of page reads

isc_info_writes Number of page writes

TABLE B.10 Database information items for performance statistics

APPENDIX B DATA STRUCTURES

356 INTERBASE 5

The following table describes the items which return count values for operations on the
database:

A Database Parameter Buffer (DPB) is an application-defined byte vector, passed as an
argument to isc_attach_database(), that specifies desired database characteristics.

A DPB consists of the following parts:

1. A byte specifying the version of the parameter buffer, always the
compile-time constant, isc_dpb_version1.

2. A contiguous series of one or more clusters of bytes, each describing a single
parameter.

Each cluster consists of the following parts:

1. A one-byte parameter type. There are compile-time constants defined for all
the parameter types (for example, isc_dpb_num_buffers).

2. A one-byte number specifying the number of bytes that follow in the
remainder of the cluster.

Request buffer item Result buffer contents

isc_info_backout_count Number of removals of a version of a record

isc_info_delete_count Number of database deletes since the database was last attached

isc_info_expunge_count Number of removals of a record and all of its ancestors, for records
whose deletions have been committed

isc_info_insert_count Number of inserts into the database since the database was last
attached

isc_info_purge_count Number of removals of old versions of fully mature records
(records committed, resulting in older—ancestor—versions no
longer being needed)

isc_info_read_idx_count Number of reads done via an index since the database was last
attached

isc_info_read_seq_count Number of sequential database reads, i.e., the number of
sequential table scans (row reads) done on each table since the
database was last attached

isc_info_update_count Number of database updates since the database was last
attached

TABLE B.11 Database information items for operation counts

DATABASE INFORMATION REQUEST BUFFER AND RESULT BUFFER

API GUIDE 357

3. A variable number of bytes, whose interpretation (as a number or as a string
of characters, for example) depends on the parameter type.

The following table lists DPB items by purpose:

User Validation Item

User name isc_dpb_user_name

Password isc_dpb_password

Encrypted password isc_dpb_password_enc

System database administrator’s user name isc_dpb_sys_user_name

Authorization key for a software license isc_dpb_license

Database encryption key isc_dpb_encrypt_key

Environmental control

Number of cache buffers isc_dpb_num_buffers

dbkey context scope isc_dpb_dbkey_scope

System management

Force writes to the database to be done asynchronously or
synchronously

isc_dpb_force_write

Specify whether or not to reserve a small amount of space on
each database page for holding backup versions of records when
modifications are made.

isc_dpb_no_reserve

Specify whether or not the database should be marked as
damaged

isc_dpb_damaged

Perform consistency checking of internal structures isc_dpb_verify

Shadow control

Activate the database shadow, an optional, duplicate, in-sync
copy of the database

isc_dpb_activate_shadow

Delete the database shadow isc_dpb_delete_shadow

TABLE B.12 DPB parameters

APPENDIX B DATA STRUCTURES

358 INTERBASE 5

The following table lists DPB parameters in alphabetical order. For each parameter, it lists
its purpose, the length, in bytes, of any values passed with the parameter, and the value
to pass:

Replay logging system control

Activate a replay logging system to keep track of all database calls isc_dpb_begin_log

Deactivate the replay logging system isc_dpb_quit_log

Character set and message file specification

Language-specific message file isc_dpb_lc_messages

Character set to be utilized isc_dpb_lc_ctype

Parameter Purpose Length Value

isc_dpb_activate_shadow Directive to activate the database shadow,
which is an optional, duplicate, in-sync copy
of the database

1 (Ignored) 0 (Ignored)

isc_dpb_damaged Number signifying whether or not the
database should be marked as damaged;
1 = mark as damaged, 0 = do not mark as
damaged

1 0 or 1

isc_dpb_dbkey_scope Scope of dbkey context; 0 limits scope to the
current transaction, 1 extends scope to the
database session.

1 0 or 1

isc_dpb_delete_shadow Directive to delete a database shadow that is
no longer needed

1 (Ignored) 0 (Ignored)

isc_dpb_encrypt_key String encryption key, up to 255 characters Number of bytes
in string

String containing
key

isc_dpb_force_write Specifies whether database writes are
synchronous or asynchronous;
0 = asynchronous, 1 = synchronous

1 0 or 1

TABLE B.13 Alphabetical list of DPB parameters

User Validation Item

TABLE B.12 DPB parameters (continued)

DATABASE INFORMATION REQUEST BUFFER AND RESULT BUFFER

API GUIDE 359

Some parameters, such as isc_dpb_delete_shadow, are directives that do not require
additional parameters. Even so, you must still provide length and value bytes for these
parameters. Set length to 1, and value to 0. InterBase ignores these parameter values, but
they are required to maintain the format of the DPB.

isc_dpb_lc_ctype String specifying the character set to be
utilized

Number of bytes
in string

String containing
character set
name

isc_dpb_lc_messages String specifying a language-specific
message file

Number of bytes
in string

String containing
message file name

isc_dpb_license String authorization key for a software
license

Number of bytes
in string

String containing
key

isc_dpb_no_reserve Specifies whether or not a small amount of
space on each database page is reserved for
holding backup versions of records when
modifications are made; keep backup
versions on the same page as the primary
record to optimize update activity

0 (default) = reserve space

1= do not reserve space

1 0 or 1

isc_dpb_num_buffers Number of database cache buffers to
allocate for use with the database

Default = 75

1 Number of
buffers to allocate

isc_dpb_password String password, up to 255 characters Number of bytes
in string

String containing
password

isc_dpb_password_enc String encrypted password, up to 255
characters

Number of bytes
in string

String containing
password

isc_dpb_sys_user_name String system DBA name, up to 255
characters

Number of bytes
in string

String containing
SYSDBA name

isc_dpb_user_name String user name, up to 255 characters Number of bytes
in string

String containing
user name

Parameter Purpose Length Value

TABLE B.13 Alphabetical list of DPB parameters (continued)

APPENDIX B DATA STRUCTURES

360 INTERBASE 5

SQL datatype macro constants
InterBase defines a set of macro constants to represent SQL datatypes and NULL status
information in an XSQLVAR. An application should use these macro constants to specify
the datatype of parameters and to determine the datatypes of select-list items in an SQL
statement. The following table lists each SQL datatype, its corresponding macro constant
expression, C datatype or InterBase typedef, and whether or not the sqlind field is used
to indicate a parameter or variable that contains NULL or unknown data:

SQL datatype Macro expression C datatype or typedef
sqlind
used?

Array SQL_ARRAY ISC_QUAD No

Array SQL_ARRAY + 1 ISC_QUAD Yes

Blob SQL_BLOB ISC_QUAD No

Blob SQL_BLOB + 1 ISC_QUAD Yes

CHAR SQL_TEXT char[] No

CHAR SQL_TEXT + 1 char[] Yes

DATE SQL_DATE ISC_QUAD No

DATE SQL_DATE + 1 ISC_QUAD Yes

DECIMAL SQL_SHORT, SQL_LONG,
or SQL_DOUBLE

int, long, or double No

DECIMAL SQL_SHORT + 1, SQL_LONG + 1,
or SQL_DOUBLE + 1

int, long, or double Yes

DOUBLE PRECISON SQL_DOUBLE double No

DOUBLE PRECISION SQL_DOUBLE + 1 double Yes

INTEGER SQL_LONG long No

INTEGER SQL_LONG + 1 long Yes

FLOAT SQL_FLOAT float No

FLOAT SQL_FLOAT + 1 float Yes

TABLE B.14 SQL datatypes, macro expressions, and C datatypes

SQL DATATYPE MACRO CONSTANTS

API GUIDE 361

DECIMAL and NUMERIC datatypes are stored internally as SMALLINT, INTEGER, or DOUBLE
PRECISION datatypes. To specify the correct macro expression to provide for a DECIMAL or
NUMERIC column, use isql to examine the column definition in the table to see how
InterBase is storing column data, then choose a corresponding macro expression.

The datatype information for a parameter or select-list item is contained in the sqltype
field of the XSQLVAR structure. The value contained in sqltype provides two pieces of
information:

g The datatype of the parameter or select-list item.

g Whether sqlind is used to indicate NULL values. If sqlind is used, its value specifies
whether the parameter or select-list item is NULL (-1), or not NULL (0).

For example, if sqltype equals SQL_TEXT, the parameter or select-list item is a CHAR that
does not use sqlind to check for a NULL value (because, in theory, NULL values are not
allowed for it). If sqltype equals SQL_TEXT + 1, then sqlind can be checked to see if the
parameter or select-list item is NULL.

The C language expression, sqltype & 1, provides a useful test of whether a parameter or
select-list item can contain a NULL. The expression evaluates to 0 if the parameter or
select-list item cannot contain a NULL, and 1 if the parameter or select-list item can
contain a NULL.

NUMERIC SQL_SHORT, SQL_LONG,
or SQL_DOUBLE

int, long, or double No

NUMERIC SQL_SHORT + 1, SQL_LONG + 1,
or SQL_DOUBLE + 1

int, long, or double Yes

SMALLINT SQL_SHORT short No

SMALLINT SQL_SHORT + 1 short Yes

VARCHAR SQL_VARYING First 2 bytes: short containing
the length of the character
string. Remaining bytes: char[]

No

VARCHAR SQL_VARYING + 1 First 2 bytes: short containing
the length of the character
string. Remaining bytes: char[]

Yes

SQL datatype Macro expression C datatype or typedef
sqlind
used?

TABLE B.14 SQL datatypes, macro expressions, and C datatypes (continued)

APPENDIX B DATA STRUCTURES

362 INTERBASE 5

Status vector
Most API functions return status information that indicates success or failure. Status
information is reported in an error status vector, declared in applications as an array of
twenty long integers, using the following syntax:

#include "ibase.h"

. . .

ISC_STATUS status_vector[20];

If you plan to write your own routines instead of the InterBase error-handling routines to
read and react to the contents of the status vector, you need to know how to interpret it.

InterBase stores error information in the status vector in clusters of two or three longs.
The first cluster in the status vector always indicates the primary cause of the error.
Subsequent clusters may contain supporting information about the error, for example,
strings or numbers for display in an associated error message. The actual number of
clusters used to report supporting information varies from error to error.

In many cases, additional errors may be reported in the status vector. Additional errors
are reported immediately following the first error and its supporting information, if any.
The first cluster for each additional error message identifies the error. Subsequent clusters
may contain supporting information about the error.

Meaning of the first long in a cluster
The first long in any cluster is a numeric descriptor. By examining the numeric descriptor
for a cluster, you can always determine the:

g Total number of longs in the cluster.

g Kind of information reported in the remainder of the cluster.

g Starting location of the next cluster in the status vector.

MEANING OF THE FIRST LONG IN A CLUSTER

API GUIDE 363

The following table lists possible values for the first long in any cluster in the status
vector. Note that the first cluster in the status vector can only contain values of 0, 1, or
greater than 4:

Value
Longwords in
cluster Meaning

0 — End of error information in the status vector

1 2 Second long is an InterBase error code

2 2 Second long is the address of string used as a replaceable parameter in a
generic InterBase error message

3 3 Second long is the length, in bytes, of a variable length string provided by the
operating system (most often this string is a file name); third long is the
address of the string

4 2 Second long is a number used as a replaceable parameter in a generic
InterBase error message

5 2 Second long is the address of an error message string requiring no further
processing before display

6 2 Second long is a VAX/VMS error code

7 2 Second long is a Unix error code

8 2 Second long is an Apollo Domain error code

9 2 Second long is an MS-DOS or OS/2 error code

10 2 Second long is an HP MPE/XL error code

11 2 Second long is an HP MPE/XL IPC error code

12 2 Second long is a NeXT/Mach error code

NOTE As InterBase is adapted to run on other hardware and software platforms, additional numeric
descriptors for specific platform and operating system error codes may be added to the end of this list.

TABLE B.15 Interpretation of status vector clusters

APPENDIX B DATA STRUCTURES

364 INTERBASE 5

The following table lists the ibase.h #define equivalents of each numeric descriptor:

Transaction parameter buffer
The transaction parameter buffer (TPB) is an optional, application-defined byte vector,
passed as an argument to isc_start_transaction(), that sets up a transaction’s attributes, its
operating characteristics, such as whether the transaction has read and write access to
tables, or read-only access, and whether or not other simultaneously active transactions
can share table access with the transaction. Each transaction may have its own TPB, or
transactions that share operating characteristics can use the same TPB.

If a TPB is not created for a transaction, a NULL pointer must be passed to
isc_start_transaction() in its place. A default set of attributes is automatically assigned to
such transactions.

Value #define Value #define

0 isc_arg_end 8 isc_arg_domain

1 isc_arg_gds 9 isc_arg_dos

2 isc_arg_string 10 isc_arg_mpexl

3 isc_arg_cstring 11 isc_arg_mpexl_ipc

4 isc_arg_number 15 isc_arg_next_mach

5 isc_arg_interpreted 16 isc_arg_netware

6 isc_arg_vms 17 isc_arg_win32

7 isc_arg_unix

TABLE B.16 #defines for status vector numeric descriptors

TRANSACTION PARAMETER BUFFER

API GUIDE 365

A TPB is declared in a C program as a char array of one-byte elements. Each element is
a parameter that describes a single transaction attribute. The first element in every TPB
must be the isc_tpb_version3 constant. The following table lists available TPB constants,
describes their purposes, and indicates which constants are assigned as a default set of
attributes when a NULL TPB pointer is passed to isc_start_transaction():

Parameter Description

isc_tpb_version3 InterBase version 3 transaction

isc_tpb_consistency Table-locking transaction model

isc_tpb_concurrency High throughput, high concurrency transaction with acceptable consistency;
use of this parameter takes full advantage of the InterBase multi-generational
transaction model [Default]

isc_tpb_shared Concurrent, shared access of a specified table among all transactions.; use in
conjunction with isc_tpb_lock_read and isc_tpb_lock_write to establish the
lock option [Default]

isc_tpb_protected Concurrent, restricted access of a specified table; use in conjunction with
isc_tpb_lock_read and isc_tpb_lock_write to establish the lock option

isc_tpb_wait Lock resolution specifies that the transaction is to wait until locked resources
are released before retrying an operation [Default]

isc_tpb_nowait Lock resolution specifies that the transaction is not to wait for locks to be
released, but instead, a lock conflict error should be returned immediately

isc_tpb_read Access mode of read-only that allows a transaction only to select data from
tables

isc_tpb_write Access mode of read-write that allows a transaction to select, insert, update,
and delete table data [Default]

isc_tpb_lock_read Read-only access of a specified table; use in conjunction with isc_tpb_shared,
isc_tpb_protected, and isc_tpb_exclusive to establish the lock option

isc_tpb_lock_write Read-write access of a specified table; use in conjunction with isc_tpb_shared,
isc_tpb_protected, and isc_tpb_exclusive to establish the lock option [Default]

TABLE B.17 TPB constants

APPENDIX B DATA STRUCTURES

366 INTERBASE 5

TPB parameters specify the following classes of information:

g Transaction version number is used internally by the InterBase engine. It is always be
the first attribute specified in the TPB, and must always be set to isc_tpb_version3.

g Access mode describes the actions that can be performed by the functions associated with
the transaction. Valid access modes are:

isc_tpb_read

isc_tpb_write

g Isolation level describes the view of the database given a transaction as it relates to
actions performed by other simultaneously occurring transactions. Valid isolation levels
are:

isc_tpb_concurrency

isc_tpb_consistency

isc_tpb_read_committed, isc_tpb_rec_version

isc_tpb_read_committed, isc_tpb_no_rec_version

g Lock resolution describes how a transaction should react if a lock conflict occurs. Valid
lock resolutions are:

isc_tpb_wait

isc_tpb_nowait

isc_tpb_read_committed High throughput, high concurrency transaction that can read changes
committed by other concurrent transactions; use of this parameter takes full
advantage of the InterBase multi-generational transaction model

isc_tpb_rec_version Enables an isc_tpb_read_committed transaction to read the most recently
committed version of a record even if other, uncommitted versions are
pending.

isc_tpb_no_rec_version Enables an isc_tpb_read_committed transaction to read only the latest
committed version of a record

If an uncommitted version of a record is pending and isc_tpb_wait is also
specified, then the transaction waits for the pending record to be committed
or rolled back before proceeding; otherwise, a lock conflict error is reported at
once

Parameter Description

TABLE B.17 TPB constants (continued)

XSQLDA AND XSQLVAR

API GUIDE 367

g Table reservation optionally describes an access method and lock resolution for a
specified table that the transaction accesses. When table reservation is used, tables are
reserved for the specified access when the transaction is started, rather than when the
transaction actually accesses the table. Valid reservations are:

isc_tpb_shared, isc_tpb_lock_write

isc_tpb_shared, isc_tpb_lock_read

isc_tpb_protected, isc_tpb_lock_write

isc_tpb_protected, isc_tpb_lock_read

XSQLDA and XSQLVAR
All DSQL applications must declare one or more extended SQL descriptor areas
(XSQLDAs).

The XSQLDA is a host-language data structure that DSQL uses to transport data to or from
a database when processing an SQL statement string. There are two types of XSQLDAs:
input descriptors and output descriptors. Both input and output descriptors are
implemented using the XSQLDA structure.

Syntax One field in the XSQLDA, sqlvar, is an XSQLVAR structure. The sqlvar is especially
important because one XSQLVAR must be defined for each input parameter or column
returned.

Applications do not declare instances of the XSQLVAR ahead of time, but must, instead,
dynamically allocate storage for the proper number of XSQLVAR structures required for
each DSQL statement before it is executed, then deallocate it, as appropriate, after
statement execution.

APPENDIX B DATA STRUCTURES

368 INTERBASE 5

The following figure illustrates the relationship between the XSQLDA and the XSQLVAR.

An input XSQLDA consists of a single XSQLDA structure, and one XSQLVAR structure for each
input parameter. An output XSQLDA also consists of one XSQLDA structure and one
XSQLVAR structure for each data item returned by the statement.

Array of n instances of XSQLVAR

1st instance nth instance

short sqltype short sqltype

short sqlscale short sqlscale

short sqlsubtype short sqlsubtype

short sqllen short sqllen

char *sqldata char *sqldata

short *sqlind short *sqlind

short sqlname_length short sqlname_length

char sqlname[32] char sqlname[32]

short relname_length short relname_length

char relname[32] char relname[32]

short ownname_length short ownname_length

char ownname[32] char ownname[32]

short aliasname_length short aliasname_length

char aliasname[32] char aliasname[32]

Single instance of XSQLDA[][]

short version

char sqldaid[8]

ISC_LONG sqldabc

short sqln

short sqld

XSQLDA AND XSQLVAR

API GUIDE 369

The isc_dsql_prepare(), isc_dsql_describe(), and isc_dsql_describe_bind() statements can be used
to determine the proper number of XSQLVAR structures to allocate, and the
XSQLDA_LENGTH macro can be used to allocate the proper amount of space.

XSQLDA field descriptions
The following table describes the fields that comprise the XSQLDA structure:

Field definition Description

short version Indicates the version of the XSQLDA structure; set by an application

The current version is defined in ibase.h as SQLDA_VERSION1

char sqldaid[8] Reserved for future use

ISC_LONG sqldabc Reserved for future use

short sqln Indicates the number of elements in the sqlvar array; the application should set this
field whenever it allocates storage for a descriptor

short sqld Indicates the number of parameters for an input XSQLDA, or the number of select-list
items for an output XSQLDA; set by InterBase during an isc_dsql_prepare,
isc_dsql_describe(), or isc_dsql_describe_bind()

For an input descriptor, an sqld of 0 indicates that the SQL statement has no
parameters; for an output descriptor, an sqld of 0 indicates that the SQL statement
is not a SELECT statement

XSQLVAR sqlvar The array of XSQLVAR structures; the number of elements in the array is specified in
the sqln field

TABLE B.18 XSQLDA field descriptions

APPENDIX B DATA STRUCTURES

370 INTERBASE 5

XSQLVAR field descriptions
The following table describes the fields that comprise the XSQLVAR structure:

Field definition Description

short sqltype Indicates the SQL datatype of parameters or select-list items; set by InterBase
during isc_dsql_prepare, isc_dsql_describe(), or isc_dsql_describe_bind()

short sqlscale Provides scale, specified as a negative number, for exact numeric datatypes
(DECIMAL, NUMERIC); set by InterBase during isc_dsql_prepare,
isc_dsql_describe(), or isc_dsql_describe_bind()

short sqlsubtype Specifies the subtype for Blob data; set by InterBase during isc_dsql_prepare,
isc_dsql_describe(), or isc_dsql_describe_bind()

short sqllen Indicates the maximum size, in bytes, of data in the sqldata field; set by
InterBase during isc_dsql_prepare, isc_dsql_describe(), or
isc_dsql_describe_bind()

char *sqldata For input descriptors, specifies either the address of a select-list item or a
parameter; set by the application

For output descriptors, contains a value for a select-list item; set by InterBase

short *sqlind On input, specifies the address of an indicator variable; set by an application

On output, specifies the address of column indicator value for a select-list
item following a FETCH

A value of 0 indicates that the column is not NULL; a value of –1 indicates the
column is NULL; set by InterBase

short sqlname_length Specifies the length, in bytes, of the data in field, sqlname; set by InterBase
during isc_dsql_prepare() or isc_dsql_describe()

char sqlname[32] Contains the name of the column. Not NULL (\0) terminated; set by InterBase
during isc_dsql_prepare() or isc_dsql_describe()

short relname_length Specifies the length, in bytes, of the data in field, relname; set by InterBase
during isc_dsql_prepare() or isc_dsql_describe()

TABLE B.19 XSQLVAR field descriptions

XSQLDA AND XSQLVAR

API GUIDE 371

char relname[32] Contains the name of the table; not NULL (\0) terminated, set by InterBase
during isc_dsql_prepare() or isc_dsql_describe()

short ownname_length Specifies the length, in bytes, of the data in field, ownname; set by InterBase
during isc_dsql_prepare() or isc_dsql_describe()

char ownname[32] Contains the name of the table owner; not NULL (\0) terminated, set by
InterBase during isc_dsql_prepare() or isc_dsql_describe()

short aliasname_length Specifies the length, in bytes, of the data in field, aliasname; set by InterBase
during isc_dsql_prepare() or isc_dsql_describe()

char aliasname[32] Contains the alias name of the column or the column name if no alias exists;
not NULL (\0) terminated, set by InterBase during isc_dsql_prepare() or
isc_dsql_describe()

Field definition Description

TABLE B.19 XSQLVAR field descriptions (continued)

372 INTERBASE 5

API GUIDE i

A
access mode parameter 63, 64
accessing

arrays 149–161
arrays, DSQL applications 210

actions See events
addresses

error messages 177, 178
numeric data 93

aggregate functions
arrays and 149

ALIGN macro 93
allocating memory 88
animation 115
API calls, referencing/dereferencing 20, 21
API functions 19–26

arrays 146
BLOB data 114, 138
categories, summarized 197–205
conversions 163
database 40
DSQL 77
error handling 25, 167

DSQL applications 172–174
events 183
example programs 36
informational 49, 127, 192
processing SQL statements 81–83

XSQLDAs and 83, 87
prototypes 33
transactions 57, 58

applications
See also DSQL applications
BLOB data and 116, 119, 124, 127

allocating 241, 243
type checking 134

compiling See compiling
error handling 322, 323
linking See linking

monitoring performance 250
programming 19–26
recovering data 312
Windows See Windows applications

arguments See parameters
array buffers 154, 157
array columns 149, 159

associating with arrays 161
selecting 150, 152
size, setting 217
writing data to 155–161, 220

array descriptors 147–149
creating 153, 156
datatypes 215
flags, setting 214, 217, 227
initializing 227
populating 148–149, 153, 215
setting fields directly 148

array elements 146
size, setting 214

array IDs 156, 209
declaring 159
fetching 154
initializing 159

array slices 149–155
changing one slice 157
creating data buffers 157
defined 146
reading one slice 154
writing data to 155–161

arrays 149–161
See also error status array
API functions 146
associating with array columns 161
column-major order, specifying 214, 217,

227
creating 147, 160
dropping 161
DSQL applications and 81, 210

Index

ii INTERBASE 5

multi-dimensional 146, 147
dimensions, range 146

nested 146
overview 146–147
processing 24
reading data 149–155

creating data buffers 154
retrieving data 147, 149, 152, 209

selected rows 154
row-major order, specifying 214, 217, 227
subscripts 146
subsets

retrieving 147
writing to 147

updating 156–161
asynchronous events 185, 188

canceling notification 193, 242
requesting notification 317

asynchronous traps 188–189
creating 188

attaching to a database 28
attaching to databases 47–49, 78, 230

See also connecting to databases
DPBs and 42
optional entries 20
releasing system resources 256
retrieving information about 49–55, 250
temporarily 257
Windows clients 28, 30

automatic recovery functions 312

B
binary data 115
binary file types, supported 115
binary large objects See BLOB
bitmapped images 115
BLOB (defined) 114
BLOB API functions 114, 138
BLOB columns

creating 125–126
writing data to 119, 131

BLOB filters and 140
BLOB data 113, 116–127

changing 122
creating 241, 247

deleting 127
DSQL applications and 81, 117, 118–121,

124
fetching 120
filtering 139–143, 233
processing 23, 240, 243
reading 117–122, 131

BLOB filters and 140
retrieving information about 127–130, 235

defaults 232
selecting 117–120
status messagess 129
storing 116, 124, 125, 243
support 115
translating 132, 247
updating 123, 123–125, 316

BLOB datatype
arrays and 146
NULL values 119, 122, 127
user-defined 115

BLOB descriptors 23, 131–132
populating 131–132, 232
structure, defined 131

BLOB filter function
action macro definitions 138
defining 134
input/output fields 136

BLOB filters 24, 131, 132–143
control structure, defined 135
external 132, 133–139

declaring 133
writing 134–139

invoking 140
NetWare servers and 132
opening BLOBs 143, 241, 308
specifying 247
user-defined 132

BLOB handles 125
allocating 240

BLOB IDs 116
creating 125
declaring 125
resetting 122

BLOB parameter buffers 140–143
generating 234

API GUIDE iii

numeric formats 142
parameter types 142

BLOB segments 131
allocating 126
defined 116
reading 301
retrieving 121

size 237
writing 315

BLOB subtypes 115
filtering 308
retrieving 233, 237
setting 239

Borland C/C++ See C language
BPBs See BLOB parameter buffers
buffers 154, 157

BLOB filters 140
capturing error messages 170, 173
database attachments 42, 50
reinitializing event 192
transactions 60

byte order, reversing 165

C
C language

converting dates 164–165
directives 20, 21, 23, 25

error handling 176
event notification 186
predefined constants

item types (BLOBs) 128
predefined macros 88

action messages (BLOBs) 138
datatypes (XSQLDAs) 89–93
informational (SQL) 111

time structures 164
CAD files 115
changes

undoing 321
See also rollbacks

character sets
BLOB data and 131, 140

retrieving current 233, 237
setting 239

character strings

converting
SQL statements to 82, 94

CHARACTER VARYING datatype
DSQL applications and 91

client applications See SQL client applications;
Windows clients

client libraries 30
CLOSE 82
closing

databases 72
coercing datatypes (XSQLDAs) 92
column names

storing 148
column-major order

specifying 214, 217, 227
columns

arrays and 146, 150
DSQL applications 262
retrieving information about 262

commits 72, 73, 246
See also transactions
delaying 74
executing 246, 310, 312
retaining context 244

compiling 26
connecting to databases 40–49

See also attaching to databases
constants

item types (BLOBs) 128
converting

dates 164–165
CREATE DATABASE 80

DSQL applications 276
cursors

closing 284
declaring 102, 109
DSQL applications 284, 289
naming 289
opening 289

D
data

binary 115
corrupted 72
fetching 120, 154

iv INTERBASE 5

DSQL applications 280
losing 72
protecting See security
reading 149–155
recovering 312
retrieving 147, 149, 152, 209

selected rows 154
storing 146, 159, 160
variable-length

processing in XSQLDAs 91, 92
database API functions 40
database handles 40–41

assigning at run time 78
declaring 20, 41
defined 20
initializing 20, 41
multiple databases 78

database pages
retrieving information about 50

database parameter buffers 21, 39
allocating storage space 46
creating 42–46, 299
expanding 299
numeric formats 165
parameters 43, 44

adding at run time 46
databases

See also multiple databases
accessing 39, 78
attaching to 28
changes, undoing 321
closing 72
creating 80
dropping 257
performance statistics 52–53
referencing 20
retrieving information about 50, 53, 334

version numbers 334
temporary 257

datatype coercion (XSQLDAs) 92
datatype macro constants (XSQLDAs) 89–93
datatypes 30, 33

arrays 146, 215
indeterminate 115

DATE data 163

converting 164–165
DECIMAL datatype

DSQL applications and 91
DECLARE CURSOR 82
DECLARE FILTER 133, 134
declaring

array IDs 159
BLOB descriptors 23
BLOB filters 133
BLOB handles 125
BLOB IDs 125
cursors 102, 109
database handles 20, 41
error status vectors 168
extended descriptor areas 83
transaction handles 21, 59

default directories
Windows clients 30

defaults, retrieving
BLOBs 232

DELETE
BLOB data 127
DSQL applications 290

deleting See dropping
DESCRIBE 82
descriptor areas (extended) See XSQLDAs
descriptor fields See array descriptors; BLOB

descriptors
detaching from databases 41, 55

See also disconnecting from databases
directories

Windows clients 30
disconnecting from databases 55, 256

See also detaching from databases
displaying See output
DLLs 36
DOS applications 29
DOS environment variables 29–30
DPBs See database parameter buffers
dropping

arrays 161
databases 56, 257

DSQL
programming methods 94–112

DSQL API functions 77

API GUIDE v

DSQL applications 23, 77
arrays and 81, 149, 210
BLOB processing 81, 117, 118–121, 124
closing cursors 284
declaring cursors 102, 109
defining cursors 289
error handling 172–174
extended descriptor areas See XSQLDAs
fetching data 280
queries 99–111
retrieving information about 264

SELECT statements 262
SQL statements 81–83

DSQL statements
executing 267, 271, 275, 277

repeatedly 286
handles

allocating 258, 260
freeing 284

input parameters 264
retrieving information about 292

DSQL_close option 284
DSQL_drop option 285
dynamic link libraries See DLLs
dynamic SQL See DSQL

E
environment variables 29–30
environments

PCs 28
retrieving information about 52

EPBs See event parameter buffers
error codes 168, 177

examining status vector 174–178
system 178
translating 172, 322

error messages 168
See also SQL error messages
addresses 177, 178
building 303
displaying 169, 170, 172, 314
DSQL applications 172–174

error status array 25
error status vectors 25

checking 168

clusters 174
declaring 168
numeric descriptors 175–177

numeric values 178
parsing 174–183

error-handling API functions 25, 167
DSQL applications 172–174

error-handling routines 71, 177
SQL 322, 323

errors 174, 321
run-time 167
transactions 71

event buffer, reinitializing 192
event parameter buffers 184

allocating 295
comparing event counts 296
creating 186

events 183
asynchronous 185, 188

canceling notification 193, 242
requesting notification 317

posting 296
processing 25, 188–189
retrieving 192
synchronous 185, 336
transaction control 185
waiting on 187, 189

example programs 36
EXECUTE 82
EXECUTE IMMEDIATE 82
EXECUTE PROCEDURE

DSQL applications 262, 272, 276
extended SQL descriptor areas See XSQLDAs
external BLOB filters See BLOB filters

F
FETCH 82
fetching data 120, 154

See also retrieving data
DSQL applications 280

FILE structure 40
file types

BLOB data 115
filtering BLOB data 139–143, 233

See also BLOB filters

vi INTERBASE 5

formatting
error messages 170

function prototypes 33

G
GDS.DLL 36

H
handles See database handles; transaction handles
header files See ibase.h
host names, specifying 30

I
ibase.h 20, 21

BLOB descriptors 23
errors 25
XSQLDA structures 23

include files See ibase.h
indeterminate datatypes 115
information item macros (SQL) 111
informational API functions 49, 127, 192
initializing

array descriptors 227
array IDs 159
BLOB handles 125
BLOB IDs 125
database handles 20, 41
transaction handles 21, 59

input descriptors See XSQLDAs
input fields

BLOB filters 137
input parameters

DSQL statements 264
INSERT

arrays 157, 161
BLOB data 117, 123

ISC_ARRAY_BOUND structure 147
ISC_ARRAY_DESC structure 147
isc_array_get_slice() 209
isc_array_lookup_bounds() 148, 153, 156, 214
isc_array_lookup_desc() 148, 217
isc_array_put_slice() 155, 159, 220
isc_array_set_desc() 148, 227
isc_attach_database() 47, 230

DPBs and 42
isc_blob_default_desc() 232
isc_blob_gen_bpb() 140, 234
isc_blob_info() 127–130, 235
isc_blob_lookup_desc() 237
isc_blob_set_desc() 239
isc_cancel_blob() 127, 240
isc_cancel_events() 193, 242
isc_close_blob() 243
isc_commit_retaining() 72, 244
isc_commit_transaction() 71, 72, 73, 246
isc_create_blob2() 125, 143, 247
ISC_DATABASE environment variable 30
isc_database_info() 49, 54, 250
isc_db_handle type 41
isc_decode_date() 164, 252
isc_detach_database() 55, 256
isc_drop_database() 56, 257
isc_dsql_allocate_statement() 95, 258
isc_dsql_allocate_statement2() 260
isc_dsql_describe() 85, 262
isc_dsql_describe_bind() 264
isc_dsql_exec_immed2() 277
isc_dsql_execute() 95, 267
isc_dsql_execute_immediate() 94, 275
isc_dsql_execute2() 271
isc_dsql_fetch() 120, 154, 280

SELECT statements and 280
isc_dsql_prepare() 85, 95, 286

isc_dsql_sql_info() and 292
isc_dsql_set_cursor_name() 289
isc_dsql_sql_info() 111–145, 292
isc_encode_date() 165, 293
isc_event_block() 186, 295
isc_event_counts() 192–193, 296
isc_expand_dpb() 46, 299
ISC_EXPORT keyword 22
isc_get_segment() 121, 301

BLOB filters and 136
isc_info_truncated value 127
isc_interprete() 170, 303
isc_open_blob2() 143, 308
ISC_PASSWORD environment variable 30
isc_prepare_transaction() 73, 310
isc_prepare_transaction2() 74, 312

API GUIDE vii

isc_print_sqlerror() 172, 313
isc_print_status() 169, 314
isc_put_segment() 126, 315

BLOB filters and 136
ISC_QUAD structure 164
isc_que_events() 188–191, 317
isc_rollback_transaction() 71, 75, 321
isc_sql_interprete() 173–174, 323
isc_sqlcode() 172, 322
isc_start_multiple() 69, 324

isc_start_transaction() vs. 328
isc_start_transaction() 67, 327
ISC_STATUS pointer 169
isc_tr_handle type 59
isc_transaction_info() 330
ISC_USER environment variable 30
isc_vax_integer() 165, 332
isc_version() 334
isc_wait_for_event() 187–188, 336
isolation level parameter 63, 65

restrictive 64
item type constants (BLOBs) 128
item-list buffer 128

See also isc_blob_info()

L
libraries

BLOB filtering routines 133
dynamic link See DLLs

limbo transactions 310
linking 26
lock resolution parameter 64, 65
log files 173

M
macros

action messages (BLOBs) 138
ALIGN 93
datatypes (XSQLDAs) 89–93
informational (SQL) 111
XSQLDA_LENGTH 88

memory
allocating 88
retrieving information about 52

messages See error messages; status messages
Microsoft C/C++ See C language
Microsoft Windows See Windows
monitoring performance 250
multi-dimensional arrays 146, 147

dimensions, range 146
multiple databases

attaching to 78
transactions and 68, 73, 310, 312, 324

N
NCHAR VARYING datatype

DSQL applications and 91
nested arrays 146
NetWare servers

BLOB filters and 132
user names, returning 52

network DLLs 36
NULL pointers 67
NULL status 89
NULL values

arrays and 149, 159, 161
BLOB columns 119, 122, 127
BLOB handles 240
extended descriptor areas 90, 92

numbers 165
alignment addresses 93
byte ordering 165
processing in XSQLDAs 91, 92

NUMERIC datatype
DSQL applications and 91

numeric values See values

O
ODS See on-disk structure
on-disk structure

retrieving information about 51
OPEN 82
opening

BLOBs 143, 241, 308
cursors 289

output
error messages 169, 170, 172, 313, 314

output descriptors See XSQLDAs

viii INTERBASE 5

output fields
BLOB filters 137

P
parameters 299

DPBs 43, 44, 46
DSQL statements 264
input 264
SQL statements 83, 87, 89, 96, 104

processing with no 94–95, 99–104
transaction parameter buffers (TPBs) 57–69

passwords 20
See also security
overriding 30
supplying at run time 299
Windows clients 28, 30

PC development environments 28
performance statistics 52–53
performance, monitoring 250
pointers

See also cursors
FILE structure 40
transactions 67

PREPARE 82
programming

API applications 19–26
DSQL applications 77, 94–112
error handling See errors
Windows applications 22

protecting data See security

Q
queries 23

See also SQL
arrays and 150
DSQL applications 99–111

R
RDB$TRANSACTIONS 246
reading BLOB data 117–122, 131

BLOB filters and 140
reading data 149–155
recovering data 312
request buffer items 50

request buffers
defined 49

resetting BLOB IDs 122
result buffers 50

BLOBs 128–129
defined 49

retrieving data 120, 147, 149, 152, 209
DSQL applications 280
selected rows 154

reversing byte order 165
rollbacks 75, 321

See also transactions
routines

BLOB filters 133, 139
error-handling 71, 177

SQL 322, 323
row-major order, specifying 214, 217, 227
rows

DSQL applications 262
retrieving information about 262

run-time errors 167

S
security

attachment requirements 28
Windows clients 30

SELECT
See also singleton SELECTs
BLOB data and 117, 117–120

SELECT statements
arrays 149, 150–153
DSQL applications 280

executing 268, 272, 276
preparing 287
retrieving information about 262

singleton SELECTs 278
select-lists 99, 101, 105

See also queries
BLOB data 117
defined 99
processing items 103
retrieving items 102

SET TRANSACTION
DSQL applications 276

signed numbers 165

API GUIDE ix

simultaneous transactions 63, 64, 66
singleton SELECTs

DSQL applications 278
sound files, supported 115
SQL clients 28
SQL descriptor areas (extended) See XSQLDAs
SQL error messages 172–174

See also SQLCODE variable
building 322, 323
displaying 172, 313

SQL error-handling routines 322, 323
SQL statements

converting to character strings 82, 94
creating 96, 100, 106
DSQL applications and 81–83

parameters, supplying values 87, 89,
96, 104

executing 96, 99, 102, 104, 109, 110
non-query statements and 94–99
processing 96–99, 104–111

with no parameters 94–95, 99–104
retrieving select-list items 102
selecting BLOB data 117–120

SQLCODE variable
DSQL applications 172
return values 313

statements
retrieving 111–145, 292

status information 89, 168
status messages

BLOB data 129
transactions 331

status vectors See error status vectors
storing

BLOB data 116, 124, 125
data 146, 159, 160

string addresses
error messages 177, 178

strings See character strings
subscripts (arrays) 146
sweeping databases

retrieving information about 52
synchronous events 185

requesting notification 336
system crashes 312

system error codes 178

T
table names

storing 148
tables

accessing 66–67
temporary databases 257
text

BLOB type and 115
text files, supported 115
time structures 164
TPBs See transaction parameter buffers
transaction handles 58–59

assigning at run time 79
declaring 21, 59
defined 21
initializing 21, 59

transaction IDs
tracking 330

transaction parameter buffers 22, 57
constants 60
creating 60–71
default 67
numeric formats 165

transactions 57
access modes 63, 64
accessing tables 66–67
committing 72, 73, 74, 246

executing two-phase commits 246,
310, 312

retaining context 244
ending 71
events and 185
isolation levels 63–65
limbo 310
locking conflicts 64, 65
multiple databases 68, 73, 310, 312, 324
optimizing 72
referencing 21
retrieving information about 330
rolling back 75, 321
simultaneous 63, 64, 66
specifying attributes 60–71
starting 21, 58, 324, 327

x INTERBASE 5

status messages 331
transaction existence blocks (TEBs) 69
transaction parameter blocks (TPBs) 57–69

traps 188–189
See also events

U
unknown datatypes 115
unknown statements 111, 292
UPDATE

arrays 157–161
BLOB data 117, 123–125
DSQL applications 290

updating
arrays 156–161
BLOB data 123, 123–125, 316

user names 20
overriding 30
retrieving information about 52
supplying at run time 299
Windows clients 28, 30

user-defined BLOB filters 132
user-defined types

BLOB data 115

V
value parameters

SQL statements 83
values

See also NULL values
numeric descriptors 178

VARCHAR datatype
DSQL applications and 91, 92

variable-length data, processing 91, 92
vector-graphic files, supported 115
version numbers

databases 50, 334
on-disk structure 51
transaction processing 62

video files, supported 115
video segments 115
views

arrays and 149

W
Windows applications 22

defining datatypes 30, 33
event notification 187
setting default directories 30

Windows clients
attaching 28, 30
establishing program parameters 29
security 30

writing data
to arrays 155–161, 220
to BLOBs 119, 131

BLOB filters and 140

X
XSQLDA_LENGTH macro 88
XSQLDAs 83–93

See also XSQLVAR structure
address alignment 93
coercing datatypes 92

numbers 92
variable-length data 92

declaring 83
fields 85
input descriptors 83, 85, 87

allocating 88
arrays 158
creating 96, 104

output descriptors 83, 85, 87
allocating 88
creating 99, 105

resizing 287
retrieving NULL values 89, 90
select-list items and 99, 101, 105

arrays 150–151, 154
BLOB data 117

setting NULL values 92
specifying datatypes 89–93

numbers 91
variable-length data 91, 92

structures 23, 83
XSQLVAR structure 87, 98

allocating 85
arrays 151
BLOB data 119, 124

API GUIDE xi

datatypes 90
defined 83
fields 86
setting up select-list items 101

	Table of Contents
	List of Tables
	Using the API Guide
	Who should use this guide
	Topics covered in this guide
	Sample database and applications

	Application Requirements
	Requirements for all applications
	Including ibase.h
	Database requirements
	Declaring database handles
	Setting up a DPB

	Transaction requirements
	Declaring transaction handles
	Setting up a TPB

	Additional requirements
	Microsoft Windows requirements
	DSQL requirements
	Blob requirements
	Array requirements
	Event requirements
	Error-handling requirements

	Compiling and linking

	Programming with the�InterBase�API
	Basic procedure for application development
	Supported development environments
	User name and password requirements
	Specifying user name and password
	Using environment variables
	Setting a default database directory
	Setting a user name and password

	Datatypes
	Calling conventions
	Building applications
	Compilers
	Linking
	Include files
	Using Microsoft C++
	Using Borland C/C++
	Setting up the Integrated Development Environment (IDE)
	IDE default
	IDE Project Options dialog box

	The module definition file
	Using dynamic link libraries (DLLs)
	Example programs

	Working with Databases
	Connecting to databases
	Creating database handles
	Declaring database handles
	Initializing database handles

	Creating and populating a DPB
	Adding parameters to a DPB
	Attaching to a database

	Requesting information about an attachment
	Requesting buffer items and result buffer values
	Database characteristics
	Environmental characteristics
	Performance statistics
	Database operation counts

	isc_database_info() call example

	Disconnecting from databases
	Deleting a database

	Working with Transactions
	Starting transactions
	Creating transaction handles
	Declaring transaction handles
	Initializing transaction handles

	Creating a transaction parameter buffer
	Specifying the transaction version number
	Specifying access mode
	Specifying isolation level
	Specifying lock resolution
	Specifying table reservation
	Using the default TPB

	Calling isc_start_transaction()
	Calling isc_start_multiple()

	Ending transactions
	Using isc_commit_transaction()
	Using isc_commit_retaining()
	Using isc_prepare_transaction()����

	Using isc_prepare_transaction2()
	Using isc_rollback_transaction()

	Working with Dynamic SQL
	Overview of the DSQL programming process
	DSQL API limitations
	Accessing databases
	Handling transactions
	Creating a database
	Processing Blob data
	Processing array data

	Writing an API application to process SQL statements
	Determining if API calls can process an SQL statement
	Representing an SQL statement as a character string
	Specifying parameters in SQL statement strings

	Understanding the XSQLDA
	XSQLDA field descriptions
	Input descriptors
	Output descriptors
	Using the XSQLDA_LENGTH macro
	SQL datatype macro constants
	Handling varying string datatypes
	Handling NUMERIC and DECIMAL datatypes
	Coercing datatypes
	Coercing character datatypes
	Coercing numeric datatypes
	Setting a NULL indicator

	Aligning numerical data

	DSQL programming methods
	Method 1: Non-query statements without parameters
	Using isc_dsql_execute_immediate()
	Using isc_dsql_prepare() and isc_dsql_execute()

	Method 2: Non-query statements with parameters
	Creating the input XSQLDA
	Preparing and executing a statement string with parameters
	Re-executing the statement string

	Method 3: Query statements without parameters
	Preparing the output XSQLDA
	Preparing a query statement string without parameters
	Executing a statement string within the context of a cursor
	Re-executing a query statement string without parameters

	Method 4: Query statements with parameters
	Preparing the input XSQLDA
	Preparing the output XSQLDA
	Preparing a query statement string with�parameters
	Executing a query statement string within the context of a cursor
	Re-executing a query statement string with�parameters

	Determining an unknown statement type at runtime

	Working with Blob Data
	What is a Blob?
	How are Blob data stored?
	Blob subtypes
	Blob database storage

	Blob data operations
	Reading data from a Blob
	Creating the SELECT statement
	Preparing the output XSQLDA
	Preparing the SELECT statement for execution
	Executing the statement
	Fetching selected rows
	Reading and processing the Blob data

	Writing data to a Blob
	Preparing the UPDATE or INSERT statement
	Creating a new Blob and storing data
	Associating the new Blob with the Blob column

	Deleting a Blob

	Requesting information about an open Blob
	Item-list buffer items and result buffer values
	isc_blob_info() call example

	Blob descriptors
	Populating a Blob descriptor
	Filtering Blob data
	Using your own filters
	Declaring an external Blob filter to the database
	Writing an external Blob filter
	Defining the filter function
	Defining the Blob control structure
	Programming filter function actions

	Writing an application that requests filtering
	Understanding the Blob parameter buffer
	Requesting filter usage

	Working with Array Data
	Introduction to arrays
	Array database storage
	Array descriptors
	Populating an array descriptor

	Accessing array data
	Reading data from an array
	Creating the SELECT statement
	Preparing the output XSQLDA
	Preparing the SELECT statement for execution
	Executing the statement
	Populating the array descriptor
	Fetching selected rows
	Reading and processing the array data

	Writing data to an array
	Preparing the array descriptor
	Preparing the array buffer with data
	Preparing the UPDATE or INSERT statement
	Calling isc_array_put_slice()
	Associating the new array with the array column

	Deleting an array

	Working with Conversions
	Converting dates from InterBase to C format
	Converting dates from C to InterBase format
	Reversing byte order of numbers with isc_vax_integer()

	Handling Error Conditions
	Setting up an error status vector
	Using information in the status vector
	Checking the status vector for errors
	Displaying InterBase error messages
	Capturing InterBase error messages
	Setting an SQLCODE value on error
	Displaying SQL error messages
	Capturing SQL error messages
	Parsing the status vector
	How the status vector is parsed
	Meaning of the first long in a cluster
	Meaning of the second long in a cluster
	Meaning of the third long in a cluster
	Status vector parsing example

	Working with Events
	Understanding the event mechanism
	Event parameter buffers
	Synchronous event notification
	Asynchronous event notification
	Transaction control of events

	Creating EPBs with isc_event_block(�)
	Waiting on events with isc_wait_for_event()
	Continuous processing with isc_que_events()
	Creating an AST
	A complete isc_que_events() example

	Determining which events occurred with isc_event_counts()
	Canceling interest in asynchronous events with isc_cancel_events()

	API Function Reference
	Function categories
	Array functions
	Blob functions
	Database functions
	Conversion functions
	DSQL functions
	Error-handling functions
	Event functions
	Information functions
	Security functions
	Transaction control functions

	Using function definitions
	isc_add_user(�)
	isc_array_get_slice()
	isc_array_lookup_bounds()
	isc_array_lookup_desc()
	isc_array_put_slice()
	isc_array_set_desc()
	isc_attach_database()
	isc_blob_default_desc()
	isc_blob_gen_bpb()
	isc_blob_info()
	isc_blob_lookup_desc()
	isc_blob_set_desc()
	isc_cancel_blob()
	isc_cancel_events()
	isc_close_blob()
	isc_commit_retaining()
	isc_commit_transaction()
	isc_create_blob2()
	isc_database_info()
	isc_decode_date()
	isc_delete_user(�)
	isc_detach_database()
	isc_drop_database()
	isc_dsql_allocate_statement()
	isc_dsql_alloc_statement2()
	isc_dsql_describe()
	isc_dsql_describe_bind()
	isc_dsql_execute()
	isc_dsql_execute2()
	isc_dsql_execute_immediate()
	isc_dsql_exec_immed2()
	isc_dsql_fetch()
	isc_dsql_free_statement()
	DSQL_close
	DSQL_drop

	isc_dsql_prepare()
	isc_dsql_set_cursor_name()
	isc_dsql_sql_info()
	isc_encode_date()
	isc_event_block()
	isc_event_counts()
	isc_expand_dpb()
	isc_get_segment()
	isc_interprete()
	isc_modify_user(�)
	isc_open_blob2()
	isc_prepare_transaction()
	isc_prepare_transaction2()
	isc_print_sqlerror()
	isc_print_status()
	isc_put_segment()
	isc_que_events()
	isc_rollback_transaction()
	isc_sqlcode()
	isc_sql_interprete()
	isc_start_multiple()
	isc_start_transaction()
	isc_transaction_info()
	isc_vax_integer()
	isc_version()
	isc_wait_for_event()

	InterBase Document Conventions
	The InterBase documentation set
	Printing conventions
	Syntax conventions

	Data Structures
	Array descriptor
	Datatypes for array descriptors
	Blob descriptor
	Character sets
	Blob information buffers
	Item-list buffer
	Result buffer

	Blob buffer items
	Blob parameter buffer

	Database information request buffer and result buffer
	Request buffer
	Result buffer
	Request buffer items and result buffer values
	Database characteristics
	Environmental characteristics
	Performance statistics
	Database operation counts

	SQL datatype macro constants
	Status vector
	Meaning of the first long in a cluster
	Transaction parameter buffer
	XSQLDA and XSQLVAR
	XSQLDA field descriptions
	XSQLVAR field descriptions

	Index

